DOI QR코드

DOI QR Code

Bending and free vibration analysis for FGM plates containing various distribution shape of porosity

  • Hadji, Lazreg (Department of Mechanical Engineering, University of Tiaret) ;
  • Bernard, Fabrice (University of Rennes, INSA Rennes, Laboratory of Civil Engineering and Mechanical Engineering) ;
  • Safa, Abdelkader (Department of Civil Engineering, Ahmed Zabana University Centre) ;
  • Tounsi, Abdelouahed (Material and Hydrology Laboratory, Faculty of Technology, Civil Engineering Department, University of Sidi Bel Abbes)
  • Received : 2020.07.26
  • Accepted : 2021.03.22
  • Published : 2021.06.25

Abstract

In this paper hyperbolic shear deformation plate theory is presented for bending and the free vibration of functionally graded plates with considering porosities that may possibly occur inside the functionally graded materials (FGMs) during their fabrication. Four different porosity types are used for functionally graded plates. Equations of motion are derived from Hamilton's principle. In the solution of the governing equations, the Navier procedure is implemented. In the numerical examples, the effects of the porosity parameters, porosity types and geometry parameters on the bending and free vibration of the functionally graded plates are investigated. It was found that the distribution form of porosity significantly influence the mechanical behavior of FG plates, in terms of deflection, normal, shear stress and frequency.

Keywords

Acknowledgement

This research was supported by the Algerian Ministry of Higher Education and Scientific Research (MESRS) as part of the grant for the PRFU research project n° A01L02UN140120180001 and by the University of Tiaret, in Algeria

References

  1. Akavci, S.S. (2010), "Two new hyperbolic shear displacement models for orthotropic laminated composite plates", Mech. Compos. Mater., 46, 215-226. https://doi.org/10.1007/s11029-010-9140-3
  2. Akbas, S.D. (2015), "Wave propagation of a functionally graded beam in thermal environments", Steel Compos. Struct., Int. J., 19(6), 1421-1447. https://doi.org/10.12989/scs.2015.19.6.1421
  3. Akbas, S.D. (2017a), "Vibration and static analysis of functionally graded porous plates", J. Appl. Computat. Mech., 3(3), 199-207. https://doi.org/10.22055/JACM.2017.21540.1107
  4. Akbas, S.D. (2017b), "Thermal effects on the vibration of functionally graded deep beams with porosity", Int. J. Appl. Mech., 9(5), 1750076. https://doi.org/10.1142/S1758825117500764
  5. Akbas, S.D. (2017c), "Post-buckling responses of functionally graded beams with porosities", Steel Compos. Struct., Int. J., 24(5), 579-589. https://doi.org/10.12989/scs.2017.24.5.579
  6. Akbas, S.D. (2017d), "Nonlinear static analysis of functionally graded porous beams under thermal effect", Coupl. Syst. Mech., Int. J., 6(4), 399-415. https://doi.org/10.12989/csm.2017.6.4.399
  7. Akbas, S.D. (2017e) "Stability of a non-homogenous porous plate by using generalized differantial quadrature method", Int. J. Eng. Appl. Sci., 9(2), 147-155. https://doi.org/10.24107/ijeas.322375
  8. Akbas, S.D. (2018a), "Forced vibration analysis of functionally graded porous deep beams", Compos. Struct., 186, 293-302. https://doi.org/10.1016/j.compstruct.2017.12.013
  9. Akbas, S.D. (2018b), "Geometrically nonlinear analysis of functionally graded porous beams", Wind Struct., Int. J., 27(1), 59-70. https://doi.org/10.12989/was.2018.27.1.059
  10. Akbas, S.D. (2019a), "Hygro-thermal post-buckling analysis of a functionally graded beam", Coupl. Syst. Mech., Int. J., 8(5), 459-471. https://doi.org/10.12989/csm.2019.8.5.459
  11. Akbas, S.D. (2019b), "Hygro-thermal nonlinear analysis of a functionally graded beam", J. Appl. Computat. Mech., 5(2), 477-485. https://doi.org/10.22055/JACM.2018.26819.1360
  12. Akbas, S.D. (2019c), "Buckling analysis of a fiber reinforced laminated composite plate with porosity", J. Computat. Appl. Mech., 50(2), 375-380. https://doi.org/10.22059/JCAMECH.2019.291967.448
  13. Akbas, S.D. (2019d), "Longitudinal forced vibration analysis of porous a nanorod", Muhendislik Bilimleri ve Tasarim Dergisi, 7(4), 736-743. https://doi.org/10.21923/jesd.553328
  14. Akbas, S.D. (2020a), "Dynamic analysis of thick beams with functionally graded porous layers and viscoelastic support", J. Vib. Control, 27(13-14), 1644-1655. https://doi.org/10.1177/1077546320947302
  15. Akbas, S.D. (2020b), "Dynamic analysis of viscoelastic functionally graded porous thick beams under pulse load", Eng. Comput. https://doi.org/10.1007/s00366-020-01070-3
  16. Al-Furjan, M.S.H., Habibi, M., won Jung, D., Sadeghi, S., Safarpour, H., Tounsi, A. and Chen, G. (2020a), "A computational framework for propagated waves in a sandwich doubly curved nanocomposite panel", Eng. Comput. https://doi.org/10.1007/s00366-020-01130-8
  17. Atmane, H.A., Tounsi, A. and Bernard, F. (2015), "Effect of thickness stretching and porosity on mechanical response of a functionally graded beams resting on elastic foundations", Int. J. Mech. Mater., 13(1), 71-84. https://doi.org/10.1007/s10999-015-9318-x
  18. Avcar, M. (2019), "Free vibration of imperfect sigmoid and power law functionally graded beams", Steel Compos. Struct., Int. J., 30(6), 603-615. https://doi.org/10.12989/scs.2019.30.6.603
  19. Bourada, F., Bousahla, A.A., Bourada, M., Azzaz, A., Zinata, A. and Tounsi, A. (2019), "Dynamic investigation of porous functionally graded beam using a sinusoidal shear deformation theory", Wind Struct., Int. J., 28(1), 19-30. https://doi.org/10.12989/was.2019.28.1.019
  20. Daouadji, T.H. and Benferhat, R. (2016), "Bending analysis of an imperfect FGM plates under hygrothermo-mechanical loading with analytical validation", Adv. Mater. Res., Int. J., 5(1), 35-53. https://doi.org/10.12989/amr.2016.5.1.035
  21. Demirhan, P.A. and Taskin, V. (2019), "Bending and free vibration analysis of Levy-type porous functionally graded plate using state space approach", Compos. B Eng., 160, 661-676. https://doi.org/10.1016/j.compositesb.2018.12.020
  22. Dharan, S., Syam Prakash, V. and Savithri, S. (2010), "A higher order shear deformation model for functionally graded plates", Proceedings of International Conference on Technological Trends (ICTT2010), Trivandrum, India, November.
  23. Ebrahimi, F., Mahmoodi, F. and Barati, M.R. (2017), "Thermo-mechanical vibration analysis of functionally graded micro/nanoscale beams with porosities based on modified couple stress theory", Adv. Mater. Res., Int. J., 6(3), 279-301. https://doi.org/10.12989/amr.2017.6.3.279
  24. Hadji, L. and Adda Bedia, E.A. (2015), "Influence of the porosities on the free vibration of FGM beams", Wind Struct., Int. J., 21(3), 273-287. https://doi.org/10.12989/was.2015.21.3.273
  25. Hadji, L., Atmane, H.A., Tounsi, A., Mechab, I. and Bedia, E.A. (2011), "Free vibration of functionally graded sandwich plates using four-variable refined plate theory", Appl. Mathe. Mech., 32(7), 925-942. https://doi.org/10.1007/s10483-011-1470-9
  26. Hadj, B., Rabia, B. and Daouadji, T.H. (2019), "Influence of the distribution shape of porosity on the bending FGM new plate model resting on elastic foundations", Struct. Eng. Mech., Int. J., 72(1), 823-832. https://doi.org/10.12989/sem.2019.72.1.061
  27. Hussain, M., Naeem, M.N., Khan, M.S. and Tounsi, A. (2020), "Computer-aided approach for modelling of FG cylindrical shell sandwich with ring supports", Comput. Concrete, Int. J., 25(5), 411-425. https://doi.org/10.12989/cac.2020.25.5.411
  28. Jouneghani, F.Z., Dimitri, R. and Tornabene, F. (2018), "Structural response of porous FG nanobeams under hygro-thermo-mechanical loadings", Compos. Part B: Eng., 152, 71-78. https://doi.org/10.1016/j.compositesb.2018.06.023
  29. Nguyen, T.K., Sab, K. and Bonnet, G. (2008), "First order shear deformation plate models for functionally graded materials", Compos. Struct., 83, 25-36. https://doi.org/10.1016/j.compstruct.2007.03.004
  30. Nguyen, D.D., Kim, S.E. and Nguyen, D.K. (2020), "Nonlinear buckling and post-buckling analysis of shear deformable stiffened truncated conical sandwich shells with functionally graded face sheets and a functionally graded porous core", J. Sandw. Struct. Mater. https://doi.org/10.1177/1099636220906821
  31. Ramteke, P.M., Panda, S.K. and Sharma, N. (2019), "Effect of grading pattern and porosity on the eigen characteristics of porous functionally graded structure", Steel Compos. Struct., Int. J., 33(6), 865-875. https://doi.org/10.12989/scs.2019.33.6.865
  32. Reddy, J.N. (2000), "Analysis of functionally graded plates", Int. J. Numer. Method. Eng., 47(1-3), 663-684. https://doi.org/10.1002/(SICI)1097-0207(20000110/30)47:1/3<663::AID-NME787>3.0.CO;2-8
  33. Trinh, C.M., Nguyen, D.D. and Kim, S.E. (2019), "Effects of porosity and thermomechanical loading on free vibration and nonlinear dynamic response of functionally graded sandwich shells with double curvature", Aerosp. Sci. Technol., 87, 119-132. https://doi.org/10.1016/j.ast.2019.02.010
  34. Trinh, M.C., Mukhopadhyay, T. and Kim, S.E. (2020), "A semi-analytical stochastic buckling quantification of porous functionally graded plates", Aerosp. Sci. Technol., 105, 105928. https://doi.org/10.1016/j.ast.2020.105928
  35. Wattanasakulponga, N. and Ungbhakornb, V. (2014), "Linear and non linear vibration analysis of elastically restrained ends FGM beams with porosities", Aero. Sci. Technol., 32(1), 111-120. https://doi.org/10.1016/j.ast.2013.12.002
  36. Wattanasakulpong, N., Prusty, B.G., Kelly, D.W. and Hoffman, M. (2012), "Free vibration analysis of layered functionally graded beams with experimental validation", Mater. Des., 36, 182-190. https://doi.org/10.1016/j.matdes.2011.10.049
  37. Wu, D., Liu, A., Huang, Y., Huang, Y., Pi, Y. and Gao, W. (2018), "Dynamic analysis of functionally graded porous structures through finite element analysis", Eng. Struct., 165, 287-301. https://doi.org/10.1016/j.engstruct.2018.03.023
  38. Xu, K., Yuan, Y. and Li, M. (2019), "Buckling behavior of functionally graded porous plates integrated with laminated composite faces sheets", Steel Compos. Struct., Int. J., 32(5), 633-642. https://doi.org/10.12989/scs.2019.32.5.633
  39. Younsi, A., Tounsi, A., Zaoui, F.Z., Bousahla, A.A. and Mahmoud, S.R. (2018), "Novel quasi-3D and 2D shear deformation theories for bending and free vibration analysis of FGM plates", Geomech. Eng., Int. J., 14(6), 519-532. https://doi.org/10.12989/gae.2018.14.6.519
  40. Zenkour, A.M. (2006), "Generalised shear deformation theory for bending analysis of functionally graded plates", Appl. Mathe. Modell., 30, 67-84. https://doi.org/10.1016/j.apm.2005.03.009
  41. Zhao, J., Xie, F., Wang, A., Shuai, C., Tang, J. and Wang, Q. (2019), "Vibration behavior of the functionally graded porous (FGP) doubly-curved panels and shells of revolution by using a semi-analytical method", Compos. Part B: Eng., 157, 219-238. https://doi.org/10.1016/j.compositesb.2018.08.087