DOI QR코드

DOI QR Code

Thermostructural shape memory effect observations of ductile Cu-Al-Mn smart alloy

  • Canbay, Canan Aksu (Department of Physics, Firat University) ;
  • Karaduman, Oktay (Department of Physics, Firat University) ;
  • Ibrahim, Pshdar A. (Department of Physics, Firat University) ;
  • Ozkul, İskender (Department of Mechanical Engineering, Mersin University)
  • 투고 : 2020.10.09
  • 심사 : 2021.02.23
  • 발행 : 2021.03.25

초록

The Cu-Al-Mn shape memory alloy (SMA) with a new different composition was fabricated by arc melting method. The characteristic shape memory effect (SME) property of Cu-Al based SMA was revealed by performing thermostructural measurements. The differential scanning calorimetry (DSC) tests were taken to observe the reversible martensitic phase transformation peaks of the alloy as evidence of SME property of the alloy. To determine the basic thermodynamical parameters of the alloy, these endothermic and exothermic transformation peaks were analyzed by the tangent differentiation method that was performed automatically by the DSC analyzing program over a manually selected part on the DSC curve and by these analyses the characteristic martensitic transformation temperatures (working temperatures) that found below 100℃ and the enthalpy change values of the alloy were directly obtained. The other kinetic transformation parameters of the alloy - the entropy change, hysteresis, and equilibrium temperature - were also determined. The common high-temperature behavior of the Cu-Al based Heusler alloys was detected by differential thermal analysis (DTA) measurement. The XRD and metallography tests that were conducted at room temperature showed the presence of M18R and the dominant 2H martensite structures that formed in the alloy and this dual martensitic structure was also prescribed by determining the theoretical e/a ratio of the alloy. Furthermore, the microhardness tests on the alloy demonstrated the high ductility feature of the alloy. All results demonstrated that the CuAlMn alloy exhibiting a shape memory effect property can be useful in smart alloy applications.

키워드

과제정보

This study was financially supported by the Research Fund of Mersin University in Turkey with the project number 2019-3-AP3-3827.

참고문헌

  1. Agrawal, A. and Vajpai, S.K. (2020), "Preparation of Cu-Al-Ni shape memory alloy strips by spray deposition-hot rolling route", Mater. Sci. Technol., 36(12), 1337-1348. https://doi.org/10.1080/02670836.2020.1781354
  2. Ahlers, M. (1995), "Phase stability of martensitic structures", J. De Phy IV, 5(C8), C8-C71-8-80. https://doi.org/10.1051/jp4:1995808
  3. Alaneme, K.K. and Okotete, E.A. (2016), "Reconciling viability and cost-effective shape memory alloy options - A review of copper and iron based shape memory metallic systems", Eng. Sci. Technol., 19(3), 1582-1592. https://doi.org/10.1016/j.jestch.2016.05.010
  4. Al-Humairi, S.N.S. (2019), "Cu-based shape memory alloys: modified structures and their related properties", Book Chapter in: Recent Advancements in the Metallurgical Engineering and Electrodeposition, IntechOpen Ltd., London, UK. https://doi.org/10.5772/intechopen.86193
  5. Bradley, A.J. and Rodgers, J.W. (1934), "The crystal structure of the heusler alloys", Proceedings of the royal society of london. Series A, Containing Papers of a Mathematical and Physical Character, 144(852), 340-359. http://doi.org/10.1098/rspa.1934.0053
  6. Braga, F.D.O., Matlakhov, A.N., Matlakhova, L.A., Monteiro, S.N. and Araujo, C.J.D. (2017), "Martensitic transformation under compression of a plasma processed polycrystalline shape memory CuAlNi Alloy", Mater. Res., 20(6), 1579-1592. http://dx.doi.org/10.1590/1980-5373-MR-2016-0476
  7. Canbay, C.A. and Aydogdu, A. (2013), "Thermal analysis of Cu-14.82 wt% Al-0.4 wt% Be shape memory alloy", J. Therm. Anal. Calorim., 113, 731-737. https://doi.org/10.1007/s10973-012-2792-6
  8. Canbay, C.A. and Karagoz, Z. (2013), "Effects of annealing temperature on thermomechanical properties of Cu-Al-Ni shape memory alloys", Int. J. Thermophys., 34, 1325-1335. https://doi.org/10.1007/s10765-013-1486-z
  9. Canbay, C.A. and Keskin, A. (2014), "Effects of vanadium and cadmium on transformation temperatures of Cu-Al-Mn shape memory alloy", J. Therm. Anal. Calorim., 118, 1407-1412. https://doi.org/10.1007/s10973-014-4034-6
  10. Canbay, C.A., Genc, Z.K. and Sekerci, M. (2014a), "Thermal and structural characterization of Cu-Al-Mn-X (Ti,Ni) shape memory alloys", Appl. Phys. A, 115, 371-377. https://doi.org/10.1007/s00339-014-8383-6
  11. Canbay, C.A., Ozgen, S. and Genc, Z.K. (2014b), "Thermal and microstructural investigation of Cu-Al-Mn-Mg shape memory alloys". Appl. Phys. A, 117, 767-771 https://doi.org/10.1007/s00339-014-8643-5
  12. Canbay, C.A., Karaduman, O., unlu, N., Baiz, S.A. and Ozkul, I. (2019), "Heat treatment and quenching media effects on the thermodynamical, thermoelastical and structural characteristics of a new Cu-based quaternary shape memory alloy", Compos. Part B, 174(106940), 1-10. https://doi.org/10.1016/j.compositesb.2019.106940
  13. Ci, W.Y., Abu Bakar, T.A., Hamzah, E. and Saud, S.N. (2017), "Study of X-phase formation on Cu-Al-Ni shape memory alloys with Ti Addition", J. Mech. Eng. Sci., 11(2), 2770-2779. https://doi.org/10.15282/jmes.11.2.2017.17.0251
  14. Kainuma, R., Satoh, N., Liu, X.J., Ohnuma, I. and Ishida, K. (1998), "Phase equilibria and Heusler phase stability in the Cu-rich portion of the Cu-Al-Mn system", J. Alloys Compounds, 266(1-2), 191-200. https://doi.org/10.1016/S0925-8388(97)00425-8
  15. Karaduman, O., Canbay, C.A., Ozkul, I., Baiz, S.A. and unlu, N. (2019a), "Production and Characterization of Ternary Heusler Shape Memory Alloy with A New Composition", J. Mater. Electron. Devices, 1(1), 16-19. Retrieved from http://www.dergi-fytronix.com/index.php/jmed/article/view/24
  16. Karaduman, O., Canbay, C.A., unlu, N. and Ozkul, I. (2019b), "Analysis of a newly composed Cu-Al-Mn SMA showing acute SME characteristics", AIP Conference Proceedings, 2178, 030039. https://doi.org/10.1063/1.513543
  17. Li, H., Wang, Q., Yin, F., Cui, C., Hao, G., Jiao, Z. and Zheng, N. (2020), "Effects of Parent Phase Aging and Nb Element on the Microstructure, Martensitic Transformation, and Damping Behaviors of a Cu-Al-Mn Shape Memory Alloy", Phys. Status Solidi A, 217, 1900923. https://doi.org/10.1002/pssa.201900923
  18. Liu, X.J., Ohnuma, I., Kainuma, R. and Ishida, K. (1998), "Phase equilibria in the Cu-rich portion of the Cu- Al binary system", J. Alloys Compounds, 264(1-2), 201-208. https://doi.org/10.1016/S0925-8388(97)00235-1
  19. Liu, J.L., Huang, H.Y. and Xie, J.X. (2016), "Effects of aging treatment on the microstructure and superelasticity of columnar-grained Cu71Al18Mn11 shape memory alloy", Int. J. Miner. Metall. Mater., 23, 1157-1166. https://doi.org/10.1007/s12613-016-1335-8
  20. Lu, N.H. and Chen, C.H. (2021), "Inhomogeneous martensitic transformation behavior and elastocaloric effect in a bicrystal Cu-Al-Mn shape memory alloy", Mater. Sci. Eng.: A, 800, 140386. https://doi.org/10.1016/j.msea.2020.140386
  21. Mallik, U.S. and Sampath, V. (2008), "Influence of aluminum and manganese concentration on the shape memory characteristics of Cu-Al-Mn shape memory alloys", J. Alloys Compounds, 459(1-2), 142-147. https://doi.org/10.1016/j.jallcom.2007.04.254
  22. Miyazaki, S. (1996), "Development and Characterization of Shape Memory Alloys", In: Shape Memory Alloys, International Centre for Mechanical Sciences (Courses and Lectures), Volume 351, p. 69-147, Springer, Vienna, Austria. https://doi.org/10.1007/978-3-7091-4348-3_2
  23. Namigata, Y., Hattori, Y., Khan, M.I., Kim, H.Y. and Miyazaki, S. (2016), "Enhancement of shape memory properties through precipitation hardening in a Ti-rich Ti-Ni-Pd high temperature shape memory alloy", Mater. Transact., 57(3), 241-249. https://doi.org/10.2320/matertrans.MB201516
  24. Oliveira, J.P., Panton, B., Zeng, Z., Omori, T., Zhou, Y., Miranda, R.M. and Fernandes, F.B. (2016), "Laser welded superelastic Cu-Al-Mn shape memory alloy wires", Mater. Des., 90, 122-128. http://dx.doi.org/10.1016/j.matdes.2015.10.125
  25. Oliveira, J.P., Crispim, B., Zeng, Z., Omori, T., Fernandes, F.B. and Miranda, R.M. (2019), "Microstructure and mechanical properties of gas tungsten arc welded Cu-Al-Mn shape memory alloy rods", J. Mater. Processing Tech., 271, 93-100. https://doi.org/10.1016/j.jmatprotec.2019.03.020
  26. Omori, T., Koeda, N., Sutou, Y., Kainuma, R. and Ishida, K. (2007), "Superplasticity of CuAl-Mn-Ni shape memory alloy", Mater. Transact., 48(11), 2914-2918. https://doi.org/10.2320/matertrans.D-MRA2007879
  27. Otsuka, K. and Wayman, C.M. (1998), Shape Memory Materials, Cambridge University Press, Cambridge, UK.
  28. Ozkul, I., Kurgun, M.A., Kalay, E., Canbay, C.A. and Aldas, K. (2019), "Shape memory alloys phenomena: classification of the shape memory alloys production techniques and application fields", Eur. Phys. J. Plus, 134, 585. https://doi.org/10.1140/epjp/i2019-12925-2
  29. Patterson, A.L. (1939), "The Scherrer formula for X-ray particle size determination", Phys. Rev., 56(10), 978. https://doi.org/10.1103/PhysRev.56.978
  30. Prado, M.O., Decorte, P.M. and Lovey, F. (1995), "Martensitic transformation in Cu-Mn-Al alloys", Scripta Metallurgica et Materialia, 33(6), 877-883. https://doi.org/10.1016/0956-716X(95)00292-4
  31. Roh, D.W., Lee, E.S. and Kim, Y.G. (1992), "Effects of ordering type and degree on monoclinic distortion of 18R-type martensite in Cu-Zn-Al alloys", Metall. Transact. A, 23(10), 2753-2760. https://doi.org/10.1007/BF02651754.
  32. Saburi, T., Nenno, S., Kato, S. and Takata, K. (1976), "Configurations of martensite variants in Cu-Zn-Ga", J. Less Common Metals, 50(2), 223-236. https://doi.org/10.1016/0022-5088(76)90162-4
  33. Sari, U. and Aksoy, I. (2006), "Electron microscopy study of 2H and 18R martensites in Cu-11.92wt% Al-3.78wt% Ni shape memory alloy", J. Alloys Compounds, 417(1-2), 138-142. https://doi.org/10.1016/j.jallcom.2005.09.049
  34. Shaw, J., Churchill, C. and Iadicola, M. (2008), "Tips and tricks for characterizing shape memory alloy wire: part 1-differential scanning calorimetry and basic phenomena", Experim. Techniques, 32, 55-62. https://doi.org/10.1111/j.1747-1567.2008.00410.x
  35. Sluiter, M.H.F. (2007), "Some observed bcc, fcc, and hcp superstructures", Phase Transitions, 80(4-5), 299-309. https://doi.org/10.1080/01411590701228562
  36. Sutou, Y., Kainuma, R. and Ishida, K. (1999), "Effect of alloying elements on the shape memory properties of ductile Cu-Al-Mn alloys", Mater. Sci. Eng. A, 273-275, 375-337. https://doi.org/10.1016/S0921-5093(99)00301-9
  37. Sutou, Y., Omori, T., Kainuma, R. and Ishida, K. (2008), "Ductile Cu-Al-Mn basedshape memory alloys: general properties and applications", Mater. Sci. Technol., 24(8), 896-901. https://doi.org/10.1179/174328408X302567
  38. Sutou, Y., Omori, T., Kainuma, R. and Ishida, K. (2013), "Grain size dependence of pseudoelasticity in polycrystalline Cu-Al-Mn-based shape memory sheets", Acta Materialia, 61(10), 3842-3850. https://doi.org/10.1016/j.actamat.2013.03.022
  39. Titenko, A., Demchenko, L., Perekos, A., Babanli, M., Huseynov, S. and Ren, T.Z. (2020), "Deformational and magnetic effects in Cu-Al-Mn alloys", Appl. Nanosci., 10(12), 5037-5043. https://doi.org/10.1007/s13204-020-01494-9
  40. Tong, H.C. and Wayman, C.M. (1974), "Characteristic temperatures and other properties of thermoelastic martensites", Acta Metall., 22, 887-896. https://doi.org/10.1016/0001-6160(74)90055-8
  41. Velazquez, D. and Romero, R. (2020), "Calorimetric study of spinodal decomposition in β-Cu-Al-Mn", J. Therm. Anal. Calorim., 1-7. https://doi.org/10.1007/s10973-019-09234-0
  42. Webster, P.J. (1969), "Heusler alloys", Contemporary Phys., 10(6), 559-577. https://doi.org/10.1080/00107516908204800
  43. Xie, J., Liu, J. and Huang, H. (2015), "Structure design of high-performance Cu-based shape memory alloys", Rare Met., 34, 607-624. https://doi.org/10.1007/s12598-015-0557-7
  44. Yang, S., Zhang, F., Wu, J., Lu, Y., Shi, Z., Wang, C. and Liu, X. (2017), "Superelasticity and shape memory effect in Cu-Al-Mn-V shape memory alloys", Mater. Des., 115, 17-25. https://doi.org/10.1016/j.matdes.2016.11.035