Acknowledgement
This study was financially supported by the Research Fund of Mersin University in Turkey with the project number 2019-3-AP3-3827.
References
- Agrawal, A. and Vajpai, S.K. (2020), "Preparation of Cu-Al-Ni shape memory alloy strips by spray deposition-hot rolling route", Mater. Sci. Technol., 36(12), 1337-1348. https://doi.org/10.1080/02670836.2020.1781354
- Ahlers, M. (1995), "Phase stability of martensitic structures", J. De Phy IV, 5(C8), C8-C71-8-80. https://doi.org/10.1051/jp4:1995808
- Alaneme, K.K. and Okotete, E.A. (2016), "Reconciling viability and cost-effective shape memory alloy options - A review of copper and iron based shape memory metallic systems", Eng. Sci. Technol., 19(3), 1582-1592. https://doi.org/10.1016/j.jestch.2016.05.010
- Al-Humairi, S.N.S. (2019), "Cu-based shape memory alloys: modified structures and their related properties", Book Chapter in: Recent Advancements in the Metallurgical Engineering and Electrodeposition, IntechOpen Ltd., London, UK. https://doi.org/10.5772/intechopen.86193
- Bradley, A.J. and Rodgers, J.W. (1934), "The crystal structure of the heusler alloys", Proceedings of the royal society of london. Series A, Containing Papers of a Mathematical and Physical Character, 144(852), 340-359. http://doi.org/10.1098/rspa.1934.0053
- Braga, F.D.O., Matlakhov, A.N., Matlakhova, L.A., Monteiro, S.N. and Araujo, C.J.D. (2017), "Martensitic transformation under compression of a plasma processed polycrystalline shape memory CuAlNi Alloy", Mater. Res., 20(6), 1579-1592. http://dx.doi.org/10.1590/1980-5373-MR-2016-0476
- Canbay, C.A. and Aydogdu, A. (2013), "Thermal analysis of Cu-14.82 wt% Al-0.4 wt% Be shape memory alloy", J. Therm. Anal. Calorim., 113, 731-737. https://doi.org/10.1007/s10973-012-2792-6
- Canbay, C.A. and Karagoz, Z. (2013), "Effects of annealing temperature on thermomechanical properties of Cu-Al-Ni shape memory alloys", Int. J. Thermophys., 34, 1325-1335. https://doi.org/10.1007/s10765-013-1486-z
- Canbay, C.A. and Keskin, A. (2014), "Effects of vanadium and cadmium on transformation temperatures of Cu-Al-Mn shape memory alloy", J. Therm. Anal. Calorim., 118, 1407-1412. https://doi.org/10.1007/s10973-014-4034-6
- Canbay, C.A., Genc, Z.K. and Sekerci, M. (2014a), "Thermal and structural characterization of Cu-Al-Mn-X (Ti,Ni) shape memory alloys", Appl. Phys. A, 115, 371-377. https://doi.org/10.1007/s00339-014-8383-6
- Canbay, C.A., Ozgen, S. and Genc, Z.K. (2014b), "Thermal and microstructural investigation of Cu-Al-Mn-Mg shape memory alloys". Appl. Phys. A, 117, 767-771 https://doi.org/10.1007/s00339-014-8643-5
- Canbay, C.A., Karaduman, O., unlu, N., Baiz, S.A. and Ozkul, I. (2019), "Heat treatment and quenching media effects on the thermodynamical, thermoelastical and structural characteristics of a new Cu-based quaternary shape memory alloy", Compos. Part B, 174(106940), 1-10. https://doi.org/10.1016/j.compositesb.2019.106940
- Ci, W.Y., Abu Bakar, T.A., Hamzah, E. and Saud, S.N. (2017), "Study of X-phase formation on Cu-Al-Ni shape memory alloys with Ti Addition", J. Mech. Eng. Sci., 11(2), 2770-2779. https://doi.org/10.15282/jmes.11.2.2017.17.0251
- Kainuma, R., Satoh, N., Liu, X.J., Ohnuma, I. and Ishida, K. (1998), "Phase equilibria and Heusler phase stability in the Cu-rich portion of the Cu-Al-Mn system", J. Alloys Compounds, 266(1-2), 191-200. https://doi.org/10.1016/S0925-8388(97)00425-8
- Karaduman, O., Canbay, C.A., Ozkul, I., Baiz, S.A. and unlu, N. (2019a), "Production and Characterization of Ternary Heusler Shape Memory Alloy with A New Composition", J. Mater. Electron. Devices, 1(1), 16-19. Retrieved from http://www.dergi-fytronix.com/index.php/jmed/article/view/24
- Karaduman, O., Canbay, C.A., unlu, N. and Ozkul, I. (2019b), "Analysis of a newly composed Cu-Al-Mn SMA showing acute SME characteristics", AIP Conference Proceedings, 2178, 030039. https://doi.org/10.1063/1.513543
- Li, H., Wang, Q., Yin, F., Cui, C., Hao, G., Jiao, Z. and Zheng, N. (2020), "Effects of Parent Phase Aging and Nb Element on the Microstructure, Martensitic Transformation, and Damping Behaviors of a Cu-Al-Mn Shape Memory Alloy", Phys. Status Solidi A, 217, 1900923. https://doi.org/10.1002/pssa.201900923
- Liu, X.J., Ohnuma, I., Kainuma, R. and Ishida, K. (1998), "Phase equilibria in the Cu-rich portion of the Cu- Al binary system", J. Alloys Compounds, 264(1-2), 201-208. https://doi.org/10.1016/S0925-8388(97)00235-1
- Liu, J.L., Huang, H.Y. and Xie, J.X. (2016), "Effects of aging treatment on the microstructure and superelasticity of columnar-grained Cu71Al18Mn11 shape memory alloy", Int. J. Miner. Metall. Mater., 23, 1157-1166. https://doi.org/10.1007/s12613-016-1335-8
- Lu, N.H. and Chen, C.H. (2021), "Inhomogeneous martensitic transformation behavior and elastocaloric effect in a bicrystal Cu-Al-Mn shape memory alloy", Mater. Sci. Eng.: A, 800, 140386. https://doi.org/10.1016/j.msea.2020.140386
- Mallik, U.S. and Sampath, V. (2008), "Influence of aluminum and manganese concentration on the shape memory characteristics of Cu-Al-Mn shape memory alloys", J. Alloys Compounds, 459(1-2), 142-147. https://doi.org/10.1016/j.jallcom.2007.04.254
- Miyazaki, S. (1996), "Development and Characterization of Shape Memory Alloys", In: Shape Memory Alloys, International Centre for Mechanical Sciences (Courses and Lectures), Volume 351, p. 69-147, Springer, Vienna, Austria. https://doi.org/10.1007/978-3-7091-4348-3_2
- Namigata, Y., Hattori, Y., Khan, M.I., Kim, H.Y. and Miyazaki, S. (2016), "Enhancement of shape memory properties through precipitation hardening in a Ti-rich Ti-Ni-Pd high temperature shape memory alloy", Mater. Transact., 57(3), 241-249. https://doi.org/10.2320/matertrans.MB201516
- Oliveira, J.P., Panton, B., Zeng, Z., Omori, T., Zhou, Y., Miranda, R.M. and Fernandes, F.B. (2016), "Laser welded superelastic Cu-Al-Mn shape memory alloy wires", Mater. Des., 90, 122-128. http://dx.doi.org/10.1016/j.matdes.2015.10.125
- Oliveira, J.P., Crispim, B., Zeng, Z., Omori, T., Fernandes, F.B. and Miranda, R.M. (2019), "Microstructure and mechanical properties of gas tungsten arc welded Cu-Al-Mn shape memory alloy rods", J. Mater. Processing Tech., 271, 93-100. https://doi.org/10.1016/j.jmatprotec.2019.03.020
- Omori, T., Koeda, N., Sutou, Y., Kainuma, R. and Ishida, K. (2007), "Superplasticity of CuAl-Mn-Ni shape memory alloy", Mater. Transact., 48(11), 2914-2918. https://doi.org/10.2320/matertrans.D-MRA2007879
- Otsuka, K. and Wayman, C.M. (1998), Shape Memory Materials, Cambridge University Press, Cambridge, UK.
- Ozkul, I., Kurgun, M.A., Kalay, E., Canbay, C.A. and Aldas, K. (2019), "Shape memory alloys phenomena: classification of the shape memory alloys production techniques and application fields", Eur. Phys. J. Plus, 134, 585. https://doi.org/10.1140/epjp/i2019-12925-2
- Patterson, A.L. (1939), "The Scherrer formula for X-ray particle size determination", Phys. Rev., 56(10), 978. https://doi.org/10.1103/PhysRev.56.978
- Prado, M.O., Decorte, P.M. and Lovey, F. (1995), "Martensitic transformation in Cu-Mn-Al alloys", Scripta Metallurgica et Materialia, 33(6), 877-883. https://doi.org/10.1016/0956-716X(95)00292-4
- Roh, D.W., Lee, E.S. and Kim, Y.G. (1992), "Effects of ordering type and degree on monoclinic distortion of 18R-type martensite in Cu-Zn-Al alloys", Metall. Transact. A, 23(10), 2753-2760. https://doi.org/10.1007/BF02651754.
- Saburi, T., Nenno, S., Kato, S. and Takata, K. (1976), "Configurations of martensite variants in Cu-Zn-Ga", J. Less Common Metals, 50(2), 223-236. https://doi.org/10.1016/0022-5088(76)90162-4
- Sari, U. and Aksoy, I. (2006), "Electron microscopy study of 2H and 18R martensites in Cu-11.92wt% Al-3.78wt% Ni shape memory alloy", J. Alloys Compounds, 417(1-2), 138-142. https://doi.org/10.1016/j.jallcom.2005.09.049
- Shaw, J., Churchill, C. and Iadicola, M. (2008), "Tips and tricks for characterizing shape memory alloy wire: part 1-differential scanning calorimetry and basic phenomena", Experim. Techniques, 32, 55-62. https://doi.org/10.1111/j.1747-1567.2008.00410.x
- Sluiter, M.H.F. (2007), "Some observed bcc, fcc, and hcp superstructures", Phase Transitions, 80(4-5), 299-309. https://doi.org/10.1080/01411590701228562
- Sutou, Y., Kainuma, R. and Ishida, K. (1999), "Effect of alloying elements on the shape memory properties of ductile Cu-Al-Mn alloys", Mater. Sci. Eng. A, 273-275, 375-337. https://doi.org/10.1016/S0921-5093(99)00301-9
- Sutou, Y., Omori, T., Kainuma, R. and Ishida, K. (2008), "Ductile Cu-Al-Mn basedshape memory alloys: general properties and applications", Mater. Sci. Technol., 24(8), 896-901. https://doi.org/10.1179/174328408X302567
- Sutou, Y., Omori, T., Kainuma, R. and Ishida, K. (2013), "Grain size dependence of pseudoelasticity in polycrystalline Cu-Al-Mn-based shape memory sheets", Acta Materialia, 61(10), 3842-3850. https://doi.org/10.1016/j.actamat.2013.03.022
- Titenko, A., Demchenko, L., Perekos, A., Babanli, M., Huseynov, S. and Ren, T.Z. (2020), "Deformational and magnetic effects in Cu-Al-Mn alloys", Appl. Nanosci., 10(12), 5037-5043. https://doi.org/10.1007/s13204-020-01494-9
- Tong, H.C. and Wayman, C.M. (1974), "Characteristic temperatures and other properties of thermoelastic martensites", Acta Metall., 22, 887-896. https://doi.org/10.1016/0001-6160(74)90055-8
- Velazquez, D. and Romero, R. (2020), "Calorimetric study of spinodal decomposition in β-Cu-Al-Mn", J. Therm. Anal. Calorim., 1-7. https://doi.org/10.1007/s10973-019-09234-0
- Webster, P.J. (1969), "Heusler alloys", Contemporary Phys., 10(6), 559-577. https://doi.org/10.1080/00107516908204800
- Xie, J., Liu, J. and Huang, H. (2015), "Structure design of high-performance Cu-based shape memory alloys", Rare Met., 34, 607-624. https://doi.org/10.1007/s12598-015-0557-7
- Yang, S., Zhang, F., Wu, J., Lu, Y., Shi, Z., Wang, C. and Liu, X. (2017), "Superelasticity and shape memory effect in Cu-Al-Mn-V shape memory alloys", Mater. Des., 115, 17-25. https://doi.org/10.1016/j.matdes.2016.11.035