References
- Akbas, S.D. (2014a), "Wave propagation analysis of edge cracked circular beams under impact force", PloS one, 9(6), e100496. https://doi.org/10.1371/journal.pone.0100496
- Akbas, S.D. (2014b), "Free vibration of axially functionally graded beams in thermal environment", Int. J. Eng. Appl. Sci., 6(3), 37-51. https://doi.org/10.24107/ijeas.251224
- Akbas, S.D. (2014c), "Wave propagation analysis of edge cracked beams resting on elastic foundation", Int. J. Eng. Appl. Sci., 6(1), 40-52. https://doi.org/10.24107/ijeas.251218
- Akbas, S.D. (2015a), "Free Vibration Analysis of Edge Cracked Functionally Graded Beams Resting on Winkler-Pasternak Foundation", Int. J. Eng. Appl. Sci., 7(3), 1-15. https://doi.org/10.24107/ijeas.251252
- Akbas, S.D. (2015b), "Free vibration and bending of functionally graded beams resting on elastic foundation", Res. Eng. Struct. Mater., 1(1), 25-37. http://dx.doi.org/10.17515/resm2015.03st0107
- Akbas, S.D. (2018a), "Investigation on free and forced vibration of a bi-material composite beam", J. Polytechnic-Politeknik Dergisi, 21(1), 65-73. http://dx.doi.org/10.2339/politeknik.386841
- Akbas, S.D. (2018b), "Forced vibration analysis of cracked nanobeams", J. Brazil. Soc. Mech. Sci. Eng., 40(8), 392. https://doi.org/10.1007/s40430-018-1315-1
- Akbas, S.D. (2018c), "Investigation of static and vibration behaviors of a functionally graded orthotropic beam", Balikesir universitesi Fen Bilimleri Enstitusu Dergisi, 1-14. https://doi.org/10.25092/baunfbed.343227
- Akbas, S.D. (2019a), "Forced vibration analysis of functionally graded sandwich deep beams", Coupl. Syst. Mech., Int. J., 8(3), 259-271. http://dx.doi.org/10.12989/csm.2019.8.3.259
- Akbas, S.D. (2019b), "Axially Forced Vibration Analysis of Cracked a Nanorod", J. Computat. Appl. Mech., 50(1), 63-68. http://dx.doi.org/10.22059/jcamech.2019.281285.392
- Akbas, S.D. (2019c), "Longitudinal Forced Vibration Analysis of Porous A Nanorod", J. Eng. Sci. Des., 7(4), 736-743. http://dx.doi.org/10.21923/jesd.553328
- Akbas, S.D. (2021), "Forced Vibration Responses of Axially Functionally Graded Beams by using Ritz Method", J. Appl. Computat. Mech., 7(1), 109-115. http://dx.doi.org/10.22055/JACM.2020.34865.2491
- DeValve, C. and Pitchumani, R. (2014), "Analysis of vibration damping in a rotating composite beam with embedded carbon nanotubes", Compos. Struct., 110, 289-296. https://doi.org/10.1016/j.compstruct.2013.12.007
- Draiche, K., Bousahla, A.A., Tounsi, A., Alwabli, A.S., Tounsi, A. and Mahmoud, S.R. (2019), "Static analysis of laminated reinforced composite plates using a simple first-order shear deformation theory", Comput. Concrete, Int. J., 24(4), 369-378. https://doi.org/10.12989/cac.2019.24.4.369
- Ebrahimi, F., Barati, M.R. and Dabbagh, A. (2016), "Wave dispersion characteristics of axially loaded magneto-electro-elastic nanobeams", Appl. Phys. A, 122(11), 949. https://doi.org/10.1007/s00339-016-0465-1
- Ebrahimi, F. and Barati, M.R. (2017), "Dynamic modeling of magneto-electrically actuated compositionally graded nanosize plates lying on elastic foundation", Arab. J. Sci. Eng., 42(5), 1977-1997. https://doi.org/10.1007/s13369-017-2413-6
- Fan, Y. and Wang, H. (2015), "Nonlinear vibration of matrix cracked laminated beams containing carbon nanotube reinforced composite layers in thermal environments", Compos. Struct., 124, 35-43. https://doi.org/10.1016/j.compstruct.2014.12.050
- Ghayesh, M.H. (2018), "Mechanics of tapered AFG shear-deformable microbeams", Microsyst. Technologies, 24(4), 1743-1754. https://doi.org/10.1007/s00542-018-3764-y
- Jena, P.C., Parhi, D.R. and Pohit, G. (2016), "Dynamic Study of Composite Cracked Beam by Changing the Angle of Bidirectional Fibres", Iran. J. Sci. Technol., Transactions A: Science, 40(1), 27-37. https://doi.org/10.1007/s40995-016-0006-y
- Krawczuk, M., Ostachowicz, W. and Zak, A. (1997), "Modal analysis of cracked, unidirectional composite beam", Compos. Part B: Eng., 28(5-6), 641-650. https://doi.org/10.1016/S1359-8368(97)82238-X
- Mohanty, S.C., Dash, R.R. and Rout, T. (2015), "Vibration and dynamic stability of pre-twisted thick cantilever beam made of functionally graded material", Int. J. Struct. Stabil. Dyn., 15(4), 1450058. https://doi.org/10.1142/S0219455414500588
- Palanivel, S. (2006), "Dynamic analysis of laminated composite beams using higher order theories and finite elements", Compos. Struct., 73(3), 342-353. https://doi.org/10.1016/j.compstruct.2005.02.002
- Pour, H.R., Vossough, H., Heydari, M.M., Beygipoor, G. and Azimzadeh, A. (2015), "Nonlinear vibration analysis of a nonlocal sinusoidal shear deformation carbon nanotube using differential quadrature method", Struct. Eng. Mech., Int. J., 54(6), 1061-1073. https://doi.org/10.12989/sem.2015.54.6.1061
- Tornabene, F., Fantuzzi, N., Viola, E. and Reddy, J.N. (2014), "Winkler-Pasternak foundation effect on the static and dynamic analyses of laminated doubly-curved and degenerate shells and panels", Compos. Part B: Eng., 57, 269-296. https://doi.org/10.1016/j.compositesb.2013.06.020
- Vinson, J.R. and Sierakowski, R.L. (2002), Behaviour of Structures Composed of Composite Materials, Kluwer Academic Publishers, ISBN 978-140-2009-04-4, Netherlands. https://doi.org/10.1007/0-306-48414-5
- Fan, Y. and Wang, H. (2017), "The effects of matrix cracks on the nonlinear vibration characteristics of shear deformable laminated beams containing carbon nanotube reinforced composite layers", Int. J. Mech. Sci., 124, 216-228. https://doi.org/10.1016/j.ijmecsci.2017.03.016
- Waddar, S., Pitchaimani, J., Doddamani, M. and Barbero, E. (2019), "Buckling and vibration behaviour of syntactic foam core sandwich beam with natural fiber composite facings under axial compressive loads", Compos. Part B: Eng., 175, 107133. https://doi.org/10.1016/j.compositesb.2019.107133
- Yayli, M.O. (2019), "Free vibration analysis of a rotationally restrained (FG) nanotube", Microsyst. Technologies, 25(10), 3723-3734. https://doi.org/10.1007/s00542-019-04307-4
- Zenkour, A.M. (2016), "Torsional Dynamic Response of a Carbon Nanotube Embedded in Visco-Pasternak's Medium", Mathe. Model. Anal., 21(6), 852-868. https://doi.org/10.3846/13926292.2016.1248510