DOI QR코드

DOI QR Code

Forced vibration analysis of a fiber reinforced composite beam

  • Akbas, S.D. (Department of Civil Engineering, Bursa Technical University)
  • Received : 2020.08.27
  • Accepted : 2021.01.19
  • Published : 2021.03.25

Abstract

In this study, forced vibration analysis of a fiber reinforced composite cantilever beam is investigated under a harmonic load. In the beam model, the Timoshenko beam theory is used. The governing equations of problem are derived by using the Lagrange procedure. In the solution of the problem the Ritz method is used and algebraic polynomials are used with the trivial functions for the Ritz method. In the solution of the forced vibration problem, the Newmark average acceleration method is used in the time history. In the numerical examples, the effects of fibre orientation angles, the volume fraction and dynamic parameters on the forced vibration response of fiber reinforced composite beam are presented and discussed.

Keywords

References

  1. Akbas, S.D. (2014a), "Wave propagation analysis of edge cracked circular beams under impact force", PloS one, 9(6), e100496. https://doi.org/10.1371/journal.pone.0100496
  2. Akbas, S.D. (2014b), "Free vibration of axially functionally graded beams in thermal environment", Int. J. Eng. Appl. Sci., 6(3), 37-51. https://doi.org/10.24107/ijeas.251224
  3. Akbas, S.D. (2014c), "Wave propagation analysis of edge cracked beams resting on elastic foundation", Int. J. Eng. Appl. Sci., 6(1), 40-52. https://doi.org/10.24107/ijeas.251218
  4. Akbas, S.D. (2015a), "Free Vibration Analysis of Edge Cracked Functionally Graded Beams Resting on Winkler-Pasternak Foundation", Int. J. Eng. Appl. Sci., 7(3), 1-15. https://doi.org/10.24107/ijeas.251252
  5. Akbas, S.D. (2015b), "Free vibration and bending of functionally graded beams resting on elastic foundation", Res. Eng. Struct. Mater., 1(1), 25-37. http://dx.doi.org/10.17515/resm2015.03st0107
  6. Akbas, S.D. (2018a), "Investigation on free and forced vibration of a bi-material composite beam", J. Polytechnic-Politeknik Dergisi, 21(1), 65-73. http://dx.doi.org/10.2339/politeknik.386841
  7. Akbas, S.D. (2018b), "Forced vibration analysis of cracked nanobeams", J. Brazil. Soc. Mech. Sci. Eng., 40(8), 392. https://doi.org/10.1007/s40430-018-1315-1
  8. Akbas, S.D. (2018c), "Investigation of static and vibration behaviors of a functionally graded orthotropic beam", Balikesir universitesi Fen Bilimleri Enstitusu Dergisi, 1-14. https://doi.org/10.25092/baunfbed.343227
  9. Akbas, S.D. (2019a), "Forced vibration analysis of functionally graded sandwich deep beams", Coupl. Syst. Mech., Int. J., 8(3), 259-271. http://dx.doi.org/10.12989/csm.2019.8.3.259
  10. Akbas, S.D. (2019b), "Axially Forced Vibration Analysis of Cracked a Nanorod", J. Computat. Appl. Mech., 50(1), 63-68. http://dx.doi.org/10.22059/jcamech.2019.281285.392
  11. Akbas, S.D. (2019c), "Longitudinal Forced Vibration Analysis of Porous A Nanorod", J. Eng. Sci. Des., 7(4), 736-743. http://dx.doi.org/10.21923/jesd.553328
  12. Akbas, S.D. (2021), "Forced Vibration Responses of Axially Functionally Graded Beams by using Ritz Method", J. Appl. Computat. Mech., 7(1), 109-115. http://dx.doi.org/10.22055/JACM.2020.34865.2491
  13. DeValve, C. and Pitchumani, R. (2014), "Analysis of vibration damping in a rotating composite beam with embedded carbon nanotubes", Compos. Struct., 110, 289-296. https://doi.org/10.1016/j.compstruct.2013.12.007
  14. Draiche, K., Bousahla, A.A., Tounsi, A., Alwabli, A.S., Tounsi, A. and Mahmoud, S.R. (2019), "Static analysis of laminated reinforced composite plates using a simple first-order shear deformation theory", Comput. Concrete, Int. J., 24(4), 369-378. https://doi.org/10.12989/cac.2019.24.4.369
  15. Ebrahimi, F., Barati, M.R. and Dabbagh, A. (2016), "Wave dispersion characteristics of axially loaded magneto-electro-elastic nanobeams", Appl. Phys. A, 122(11), 949. https://doi.org/10.1007/s00339-016-0465-1
  16. Ebrahimi, F. and Barati, M.R. (2017), "Dynamic modeling of magneto-electrically actuated compositionally graded nanosize plates lying on elastic foundation", Arab. J. Sci. Eng., 42(5), 1977-1997. https://doi.org/10.1007/s13369-017-2413-6
  17. Fan, Y. and Wang, H. (2015), "Nonlinear vibration of matrix cracked laminated beams containing carbon nanotube reinforced composite layers in thermal environments", Compos. Struct., 124, 35-43. https://doi.org/10.1016/j.compstruct.2014.12.050
  18. Ghayesh, M.H. (2018), "Mechanics of tapered AFG shear-deformable microbeams", Microsyst. Technologies, 24(4), 1743-1754. https://doi.org/10.1007/s00542-018-3764-y
  19. Jena, P.C., Parhi, D.R. and Pohit, G. (2016), "Dynamic Study of Composite Cracked Beam by Changing the Angle of Bidirectional Fibres", Iran. J. Sci. Technol., Transactions A: Science, 40(1), 27-37. https://doi.org/10.1007/s40995-016-0006-y
  20. Krawczuk, M., Ostachowicz, W. and Zak, A. (1997), "Modal analysis of cracked, unidirectional composite beam", Compos. Part B: Eng., 28(5-6), 641-650. https://doi.org/10.1016/S1359-8368(97)82238-X
  21. Mohanty, S.C., Dash, R.R. and Rout, T. (2015), "Vibration and dynamic stability of pre-twisted thick cantilever beam made of functionally graded material", Int. J. Struct. Stabil. Dyn., 15(4), 1450058. https://doi.org/10.1142/S0219455414500588
  22. Palanivel, S. (2006), "Dynamic analysis of laminated composite beams using higher order theories and finite elements", Compos. Struct., 73(3), 342-353. https://doi.org/10.1016/j.compstruct.2005.02.002
  23. Pour, H.R., Vossough, H., Heydari, M.M., Beygipoor, G. and Azimzadeh, A. (2015), "Nonlinear vibration analysis of a nonlocal sinusoidal shear deformation carbon nanotube using differential quadrature method", Struct. Eng. Mech., Int. J., 54(6), 1061-1073. https://doi.org/10.12989/sem.2015.54.6.1061
  24. Tornabene, F., Fantuzzi, N., Viola, E. and Reddy, J.N. (2014), "Winkler-Pasternak foundation effect on the static and dynamic analyses of laminated doubly-curved and degenerate shells and panels", Compos. Part B: Eng., 57, 269-296. https://doi.org/10.1016/j.compositesb.2013.06.020
  25. Vinson, J.R. and Sierakowski, R.L. (2002), Behaviour of Structures Composed of Composite Materials, Kluwer Academic Publishers, ISBN 978-140-2009-04-4, Netherlands. https://doi.org/10.1007/0-306-48414-5
  26. Fan, Y. and Wang, H. (2017), "The effects of matrix cracks on the nonlinear vibration characteristics of shear deformable laminated beams containing carbon nanotube reinforced composite layers", Int. J. Mech. Sci., 124, 216-228. https://doi.org/10.1016/j.ijmecsci.2017.03.016
  27. Waddar, S., Pitchaimani, J., Doddamani, M. and Barbero, E. (2019), "Buckling and vibration behaviour of syntactic foam core sandwich beam with natural fiber composite facings under axial compressive loads", Compos. Part B: Eng., 175, 107133. https://doi.org/10.1016/j.compositesb.2019.107133
  28. Yayli, M.O. (2019), "Free vibration analysis of a rotationally restrained (FG) nanotube", Microsyst. Technologies, 25(10), 3723-3734. https://doi.org/10.1007/s00542-019-04307-4
  29. Zenkour, A.M. (2016), "Torsional Dynamic Response of a Carbon Nanotube Embedded in Visco-Pasternak's Medium", Mathe. Model. Anal., 21(6), 852-868. https://doi.org/10.3846/13926292.2016.1248510