DOI QR코드

DOI QR Code

폐기종의 시각적 분류 및 정량적 평가

Pulmonary Emphysema: Visual Interpretation and Quantitative Analysis

  • 김지항 (분당서울대학교병원 영상의학과)
  • Jihang Kim (Department of Radiology, Seoul National University Bundang Hospital)
  • 투고 : 2021.05.07
  • 심사 : 2021.07.04
  • 발행 : 2021.07.01

초록

폐기종은 만성 폐쇄성 폐질환을 유발하는 질환으로, CT는 폐기종을 정확하게 진단하는 데 가장 유용한 검사이다. 폐기종의 중증도는 시각적 분류 혹은 정량적 분석 등의 방법으로 평가할 수 있으며, 최근에는 딥러닝을 활용한 폐기종 연구도 다양하게 이루어지고 있다. 이러한 폐기종의 중증도 분류 방법은 다양한 연구에서 그 임상적 유용성을 입증받고 있으며, 한계점으로 지적되고 있는 측정의 신뢰성을 향상시키려는 노력 또한 이어지고 있다.

Pulmonary emphysema is a cause of chronic obstructive pulmonary disease. Emphysema can be accurately diagnosed via CT. The severity of emphysema can be assessed using visual interpretation or quantitative analysis. Various studies on emphysema using deep learning have also been conducted. Although the classification of emphysema has proven clinically useful, there is a need to improve the reliability of the measurement.

키워드

참고문헌

  1. No authors listed. The definition of emphysema. Report of a National Heart, Lung, and Blood Institute, Division of Lung Diseases workshop. Am Rev Respir Dis 1985;132:182-185 
  2. Stern EJ, Frank MS. CT of the lung in patients with pulmonary emphysema: diagnosis, quantification, and correlation with pathologic and physiologic findings. AJR Am J Roentgenol 1994;162:791-798 
  3. Thurlbeck WM, Muller NL. Emphysema: definition, imaging, and quantification. AJR Am J Roentgenol 1994;163:1017-1025 
  4. Park HR, Kim YT, Jou SS, Park CH. Pulmonary comorbidities of lung emphysema. J Korean Soc Radiol 2018;79:139-151 
  5. Wyatt JP, Fischer VW, Sweet HC. Panlobular emphysema: anatomy and pathodynamics. Dis Chest 1962;41:239-259 
  6. Laurell CB, Eriksson S. The electrophoretic α; 1-globulin pattern of serum in α; 1-antitrypsin deficiency. Scand J Clin Lab Inv 1963;15:132-140 
  7. Lynch DA, Austin JH, Hogg JC, Grenier PA, Kauczor HU, Bankier AA, et al. CT-definable subtypes of chronic obstructive pulmonary disease: a statement of the Fleischner Society. Radiology 2015;277:192-205 
  8. Heard BE. A pathological study of emphysema of the lungs with chronic bronchitis. Thorax 1958;13:136-149 
  9. Satoh K, Kobayashi T, Misao T, Hitani Y, Yamamoto Y, Nishiyama Y, et al. CT assessment of subtypes of pulmonary emphysema in smokers. Chest 2001;120:725-729 
  10. Smith BM, Austin JH, Newell JD Jr, D'Souza BM, Rozenshtein A, Hoffman EA, et al. Pulmonary emphysema subtypes on computed tomography: the MESA COPD study. Am J Med 2014;127:94.e7-94.e23 
  11. Mets OM, van Hulst RA, Jacobs C, van Ginneken B, de Jong PA. Normal range of emphysema and air trapping on CT in young men. AJR Am J Roentgenol 2012;199:336-340 
  12. Barr RG, Berkowitz EA, Bigazzi F, Bode F, Bon J, Bowler RP, et al. A combined pulmonary-radiology workshop for visual evaluation of COPD: study design, chest CT findings and concordance with quantitative evaluation. COPD 2012;9:151-159 
  13. Goddard PR, Nicholson EM, Laszlo G, Watt I. Computed tomography in pulmonary emphysema. Clin Radiol 1982;33:379-387 
  14. Muller NL, Staples CA, Miller RR, Abboud RT. "Density mask". An objective method to quantitate emphysema using computed tomography. Chest 1988;94:782-787 
  15. Madani A, Zanen J, de Maertelaer V, Gevenois PA. Pulmonary emphysema: objective quantification at multidetector row CT--comparison with macroscopic and microscopic morphometry. Radiology 2006;238:1036-1043 
  16. Heussel CP, Herth FJ, Kappes J, Hantusch R, Hartlieb S, Weinheimer O, et al. Fully automatic quantitative assessment of emphysema in computed tomography: comparison with pulmonary function testing and normal values. Eur Radiol 2009;19:2391-2402 
  17. Cao X, Jin C, Tan T, Guo Y. Optimal threshold in low-dose CT quantification of emphysema. Eur J Radiol 2020;129:109094 
  18. Dirksen A. Monitoring the progress of emphysema by repeat computed tomography scans with focus on noise reduction. Proc Am Thorac Soc 2008;5:925-928 
  19. Kirby M, Hatt C, Obuchowski N, Humphries SM, Sieren J, Lynch DA, et al. Inter- and intra-software reproducibility of computed tomography lung density measurements. Med Phys 2020;47:2962-2969 
  20. El Kaddouri B, Strand MJ, Baraghoshi D, Humphries SM, Charbonnier JP, van Rikxoort EM, et al. Fleischner Society visual emphysema CT patterns help predict progression of emphysema in current and former smokers: results from the COPDGene study. Radiology 2021;298:441-449 
  21. Lynch DA, Moore CM, Wilson C, Nevrekar D, Jennermann T, Humphries SM, et al. CT-based visual classification of emphysema: association with mortality in the COPDGene study. Radiology 2018;288:859-866 
  22. Zhao T, McNitt-Gray M, Ruan D. A convolutional neural network for ultra-low-dose CT denoising and emphysema screening. Med Phys 2019;46:3941-3950 
  23. Jin H, Heo C, Kim JH. Deep learning-enabled accurate normalization of reconstruction kernel effects on emphysema quantification in low-dose CT. Phys Med Biol 2019;64:135010 
  24. Bak SH, Kim JH, Jin H, Kwon SO, Kim B, Cha YK, et al. Emphysema quantification using low-dose computed tomography with deep learning-based kernel conversion comparison. Eur Radiol 2020;30:6779-6787 
  25. Humphries SM, Notary AM, Centeno JP, Strand MJ, Crapo JD, Silverman EK, et al. Deep learning enables automatic classification of emphysema pattern at CT. Radiology 2020;294:434-444 
  26. Hasenstab KA, Yuan N, Retson T, Conrad DJ, Kligerman S, Lynch DA, et al. Automated CT staging of chronic obstructive pulmonary disease severity for predicting disease progression and mortality with a deep learning convolutional neural network. Radiol Cardiothorac Imaging 2021;3:e200477 
  27. Bodduluri S, Nakhmani A, Reinhardt JM, Wilson CG, McDonald ML, Rudraraju R, et al. Deep neural network analyses of spirometry for structural phenotyping of chronic obstructive pulmonary disease. JCI Insight 2020;5:e132781