DOI QR코드

DOI QR Code

간 섬유화 단계 평가를 위한 회색조 초음파 영상 기반 텍스처 분석

Texture Analysis of Gray-Scale Ultrasound Images for Staging of Hepatic Fibrosis

  • 박언주 (인제대학교 의과대학 해운대백병원 영상의학과) ;
  • 김승호 (인제대학교 의과대학 해운대백병원 영상의학과) ;
  • 박상준 (서울대학교병원 영상의학과) ;
  • 백태욱 (인제대학교 의과대학 해운대백병원 영상의학과)
  • Eun Joo Park (Department of Radiology, Inje University College of Medicine, Haeundae Paik Hospital) ;
  • Seung Ho Kim (Department of Radiology, Inje University College of Medicine, Haeundae Paik Hospital) ;
  • Sang Joon Park (Department of Radiology, Seoul National University Hospital) ;
  • Tae Wook Baek (Department of Radiology, Inje University College of Medicine, Haeundae Paik Hospital)
  • 투고 : 2019.11.14
  • 심사 : 2020.04.09
  • 발행 : 2021.01.01

초록

목적 간 섬유화 단계 평가를 위한 회색조 초음파 영상 기반 텍스처 분석 측정 변수들의 진단적 유용성에 대해 평가한다. 대상과 방법 간 회색조 초음파 검사를 시행한 총 167명의 환자를 대상으로 하였다. 텍스처 분석은 한 명의 의사가 전용 소프트웨어를 이용하여 시행하였으며 3, 5, 6, 7, 8번 간 분절에 20픽셀에 해당하는 원형 관심 영역을 지정하여 측정하였다. 간 섬유화 정도에 대한 표준 품으로는 fibrosis-4 (이하 FIB-4 index)를 사용하였다. 산출된 텍스처 변수들과 간의 섬유화 정도의 비교는 t-검정과 Mann-Whitney U 검정을 사용하였으며, 진단적으로 유의한 변수들에 대하여 수신자 운영 특성 곡선의 곡선 하 면적(area under the receiver operating characteristic curve)으로 진단능을 평가하였다. 결과 연구에 포함된 환자는 정상군(FIB-4 < 1.45, n = 50), 경도(1.45 ≤ FIB-4 ≤ 2.35, n = 37), 중등도(2.35 < FIB-4 ≤ 3.25, n = 27)와 중증 간 섬유화군(FIB-4 > 3.25, n = 53)으로 구분되었다. 간의 5번 분절에서 왜도는 정상군과 경도군 사이에서 통계적으로 유의한 차이를 보였다(각각 0.2392 ± 0.3361, 0.4134 ± 0.3004, p = 0.0109). 정상군과 경도군을 구별하기 위한 왜도의 곡선 하 면적은 0.660 (95% confidence interval, 0.551-0.758) 이었으며, 추정 정확도, 민감도, 특이도는 각각 64%, 87%, 48%로 산출되었다. 결론 왜도는 5번 간 분절에서 정상군과 경도 섬유화군을 구분하는 데 유의한 차이를 보였다.

Purpose To evaluate the feasibility of texture analysis of gray-scale ultrasound (US) images for staging of hepatic fibrosis. Materials and Methods Altogether, 167 patients who had undergone routine US and laboratory tests for a fibrosis-4 (FIB-4) index were included. Texture parameters were measured using a dedicated in-house software. Regions of interest were placed in five different segments (3, 5, 6, 7, 8) for each patient. The FIB-4 index was used as the reference standard for hepatic fibrosis grade. Comparisons of the texture parameters between different fibrosis groups were performed with the Student's t-test or Mann-Whitney U-test. Diagnostic performance was evaluated by receiver operating curve analysis. Results The study population comprised of patients with no fibrosis (FIB-4 < 1.45, n = 50), mild fibrosis (1.45 ≤ FIB-4 ≤ 2.35, n = 37), moderate fibrosis (2.35 < FIB-4 ≤ 3.25, n = 27), and severe fibrosis (FIB-4 > 3.25, n = 53). Skewness in hepatic segment 5 showed a difference between patients with no fibrosis and mild fibrosis (0.2392 ± 0.3361, 0.4134 ± 0.3004, respectively, p = 0.0109). The area under the curve of skewness for discriminating patients with no fibrosis from those with mild fibrosis was 0.660 (95% confidence interval, 0.551-0.758), with an estimated accuracy, sensitivity, specificity of 64%, 87%, 48%, respectively. Conclusion A significant difference was observed regarding skewness in segment 5 between patients with no fibrosis and patients with mild fibrosis.

키워드

과제정보

This research received no specific grant from any funding agency in the public, commercial, or not-for-profit sectors.

참고문헌

  1. Schuppan D, Afdhal NH. Liver cirrhosis. Lancet 2008;371:838-851 https://doi.org/10.1016/S0140-6736(08)60383-9
  2. Perz JF, Armstrong GL, Farrington LA, Hutin YJ, Bell BP. The contributions of hepatitis B virus and hepatitis C virus infections to cirrhosis and primary liver cancer worldwide. J Hepatol 2006;45:529-538 https://doi.org/10.1016/j.jhep.2006.05.013
  3. Bosch FX, Ribes J, Cleries R, Diaz M. Epidemiology of hepatocellular carcinoma. Clin Liver Dis 2005;9:191-211 https://doi.org/10.1016/j.cld.2004.12.009
  4. Fattovich G, Stroffolini T, Zagni I, Donato F. Hepatocellular carcinoma in cirrhosis: incidence and risk factors. Gastroenterology 2004;127:S35-S50 https://doi.org/10.1053/j.gastro.2004.09.014
  5. Ghany MG, Strader DB, Thomas DL, Seeff LB; American Association for the Study of Liver Diseases. Diagnosis, management, and treatment of hepatitis C: an update. Hepatology 2009;49:1335-1374 https://doi.org/10.1002/hep.22759
  6. Serpaggi J, Carnot F, Nalpas B, Canioni D, Guechot J, Lebray P, et al. Direct and indirect evidence for the reversibility of cirrhosis. Hum Pathol 2006;37:1519-1526 https://doi.org/10.1016/j.humpath.2006.07.007
  7. Dufour JF, DeLellis R, Kaplan MM. Regression of hepatic fibrosis in hepatitis C with long-term interferon treatment. Dig Dis Sci 1998;43:2573-2576 https://doi.org/10.1023/A:1026601904609
  8. Manning DS, Afdhal NH. Diagnosis and quantitation of fibrosis. Gastroenterology 2008;134:1670-1681 https://doi.org/10.1053/j.gastro.2008.03.001
  9. Rockey DC, Caldwell SH, Goodman ZD, Nelson RC, Smith AD; American Association for the Study of Liver Diseases. Liver biopsy. Hepatology 2009;49:1017-1044 https://doi.org/10.1002/hep.22742
  10. Strauss S, Gavish E, Gottlieb P, Katsnelson L. Interobserver and intraobserver variability in the sonographic assessment of fatty liver. AJR Am J Roentgenol 2007;189:W320-W323 https://doi.org/10.2214/AJR.07.2123
  11. Berzigotti A, Castera L. Update on ultrasound imaging of liver fibrosis. J Hepatol 2013;59:180-182 https://doi.org/10.1016/j.jhep.2012.12.028
  12. Tchelepi H, Ralls PW, Radin R, Grant E. Sonography of diffuse liver disease. J Ultrasound Med 2002;21:1023-1032 https://doi.org/10.7863/jum.2002.21.9.1023
  13. Ahn SJ, Lee JM, Chang W, Lee SM, Kang HJ, Yang H, et al. Prospective validation of intra- and interobserver reproducibility of a new point shear wave elastographic technique for assessing liver stiffness in patients with chronic liver disease. Korean J Radiol 2017;18:926-935 https://doi.org/10.3348/kjr.2017.18.6.926
  14. Ferraioli G, Parekh P, Levitov AB, Filice C. Shear wave elastography for evaluation of liver fibrosis. J Ultrasound Med 2014;33:197-203 https://doi.org/10.7863/ultra.33.2.197
  15. Ferraioli G, Tinelli C, Zicchetti M, Above E, Poma G, Di Gregorio M, et al. Reproducibility of real-time shear wave elastography in the evaluation of liver elasticity. Eur J Radiol 2012;81:3102-3106 https://doi.org/10.1016/j.ejrad.2012.05.030
  16. Shen QL, Chen YJ, Wang ZM, Zhang TC, Pang WB, Shu J, et al. Assessment of liver fibrosis by Fibroscan as compared to liver biopsy in biliary atresia. World J Gastroenterol 2015;21:6931-6936 https://doi.org/10.3748/wjg.v21.i22.6931
  17. Srinivasa Babu A, Wells ML, Teytelboym OM, Mackey JE, Miller FH, Yeh BM, et al. Elastography in chronic liver disease: modalities, techniques, limitations, and future directions. Radiographics 2016;36:1987-2006 https://doi.org/10.1148/rg.2016160042
  18. Barr RG, Ferraioli G, Palmeri ML, Goodman ZD, Garcia-Tsao G, Rubin J, et al. Elastography assessment of liver fibrosis: society of radiologists in ultrasound consensus conference statement. Radiology 2015;276:845-861 https://doi.org/10.1148/radiol.2015150619
  19. Jeong WK, Lim HK, Lee HK, Jo JM, Kim Y. Principles and clinical application of ultrasound elastography for diffuse liver disease. Ultrasonography 2014;33:149-160 https://doi.org/10.14366/usg.14003
  20. Ahn SJ, Kim JH, Park SJ, Han JK. Prediction of the therapeutic response after FOLFOX and FOLFIRI treatment for patients with liver metastasis from colorectal cancer using computerized CT texture analysis. Eur J Radiol 2016;85:1867-1874 https://doi.org/10.1016/j.ejrad.2016.08.014
  21. Choi TW, Kim JH, Park SJ, Ahn SJ, Joo I, Han JK. Risk stratification of gallbladder polyps larger than 10 mm using high-resolution ultrasonography and texture analysis. Eur Radiol 2018;28:196-205 https://doi.org/10.1007/s00330-017-4954-1
  22. Park HJ, Kim JH, Choi SY, Lee ES, Park SJ, Byun JY, et al. Prediction of therapeutic response of hepatocellular carcinoma to transcatheter arterial chemoembolization based on pretherapeutic dynamic CT and textural findings. AJR Am J Roentgenol 2017;209:W211-W220 https://doi.org/10.2214/AJR.16.17398
  23. Liu L, Liu Y, Xu L, Li Z, Lv H, Dong N, et al. Application of texture analysis based on apparent diffusion coefficient maps in discriminating different stages of rectal cancer. J Magn Reson Imaging 2017;45:1798-1808 https://doi.org/10.1002/jmri.25460
  24. Jalil O, Afaq A, Ganeshan B, Patel UB, Boone D, Endozo R, et al. Magnetic resonance based texture parameters as potential imaging biomarkers for predicting long-term survival in locally advanced rectal cancer treated by chemoradiotherapy. Colorectal Dis 2017;19:349-362 https://doi.org/10.1111/codi.13496
  25. Kvostikov AV, Krylov AS, Kamalov UR. Ultrasound image texture analysis for liver fibrosis stage diagnostics. Program Comput Soft 2015;41:273-278 https://doi.org/10.1134/S0361768815050059
  26. Wu Z, Matsui O, Kitao A, Kozaka K, Koda W, Kobayashi S, et al. Hepatitis C related chronic liver cirrhosis: feasibility of texture analysis of MR images for classification of fibrosis stage and necroinflammatory activity grade. PLoS One 2015;10:e0118297
  27. Vallet-Pichard A, Mallet V, Nalpas B, Verkarre V, Nalpas A, Dhalluin-Venier V, et al. FIB-4: an inexpensive and accurate marker of fibrosis in HCV infection. comparison with liver biopsy and fibrotest. Hepatology 2007;46:32-36 https://doi.org/10.1002/hep.21669
  28. Sterling RK, Lissen E, Clumeck N, Sola R, Correa MC, Montaner J, et al. Development of a simple noninvasive index to predict significant fibrosis in patients with HIV/HCV coinfection. Hepatology 2006;43:1317-1325 https://doi.org/10.1002/hep.21178
  29. Sumida Y, Yoneda M, Hyogo H, Itoh Y, Ono M, Fujii H, et al. Validation of the FIB4 index in a Japanese nonalcoholic fatty liver disease population. BMC Gastroenterol 2012;12:2
  30. Shah AG, Lydecker A, Murray K, Tetri BN, Contos MJ, Sanyal AJ; Nash Clinical Research Network. Comparison of noninvasive markers of fibrosis in patients with nonalcoholic fatty liver disease. Clin Gastroenterol Hepatol 2009;7:1104-1112
  31. Castellano G, Bonilha L, Li LM, Cendes F. Texture analysis of medical images. Clin Radiol 2004;59:1061-1069 https://doi.org/10.1016/j.crad.2004.07.008
  32. Yin Z, Zou J, Li Q, Chen L. Diagnostic value of FIB-4 for liver fibrosis in patients with hepatitis B: a metaanalysis of diagnostic test. Oncotarget 2017;8:22944-22953 https://doi.org/10.18632/oncotarget.14430
  33. Chrostek L, Przekop D, Gruszewska E, Gudowska-Sawczuk M, Cylwik B. Noninvasive indirect markers of liver fibrosis in alcoholics. Biomed Res Int 2019;2019:3646975
  34. Bedossa P; French METAVIR Cooperative Study Group. Intraobserver and interobserver variations in liver biopsy interpretation in patients with chronic hepatitis C. Hepatology 1994;20:15-20 https://doi.org/10.1002/hep.1840200104
  35. Choi KJ, Jang JK, Lee SS, Sung YS, Shim WH, Kim HS, et al. Development and validation of a deep learning system for staging liver fibrosis by using contrast agent-enhanced CT images in the liver. Radiology 2018;289:688-697 https://doi.org/10.1148/radiol.2018180763
  36. Lubner MG, Malecki K, Kloke J, Ganeshan B, Pickhardt PJ. Texture analysis of the liver at MDCT for assessing hepatic fibrosis. Abdom Radiol (NY) 2017;42:2069-2078 https://doi.org/10.1007/s00261-017-1096-5
  37. Lee CH, Choi JW, Kim KA, Seo TS, Lee JM, Park CM. Usefulness of standard deviation on the histogram of ultrasound as a quantitative value for hepatic parenchymal echo texture; preliminary study. Ultrasound Med Biol 2006;32:1817-1826 https://doi.org/10.1016/j.ultrasmedbio.2006.06.014
  38. Materka A, Strzelecki M. Texture analysis methods-a review. Technical university of lodz, institute of electronics, COST B11 report. Brussels: Technical University of Lodz 1998
  39. Jaffer OS, Lung PFC, Bosanac D, Patel VM, Ryan SM, Heneghan MA, et al. Acoustic radiation force impulse quantification: repeatability of measurements in selected liver segments and influence of age, body mass index and liver capsule-to-box distance. Br J Radiol 2012;85:e858-e863 https://doi.org/10.1259/bjr/74797353
  40. Choong CC, Venkatesh SK, Siew EP. Accuracy of routine clinical ultrasound for staging of liver fibrosis. J Clin Imaging Sci 2012;2:58