참고문헌
- Abraham, F.F. (1978), "The interfacial density profile of a Lennard-Jones fluid in contact with a (100) Lennard-Jones wall and its relationship to idealized fluid/wall systems: A Monte Carlo simulation", J. Chem. Phys., 68(8), 3713-3716. https://doi.org/10.1063/1.436229.
- Atkas, O. and Aluru, N.R. (2002), "A combined continuum/DSMC technique for multiscale analysis of microfluidic filters", J. Comput. Phys., 178(2), 342-372. https://doi.org/10.1006/jcph.2002.7030.
- Baker, L.A. and Bird, S.P. (2008), "Nanopores: A makeover for membranes", Nat. Nanotechnol., 3, 73-74. http://doi.org/10.1038/nnano.2008.13.
- Brown, C.E., Everett, D.H., Powell, A.V. and Thome, P.E. (1975), "Adsorption and structuring phenomena at the solid/liquid interface", Faraday Discuss., 59, 97-108. https://doi.org/10.1039/DC9755900097.
- Calabro, F. (2017), "Modeling the effects of material chemistry on water flow enhancement in nanotube membranes", MRS Bull., 42(4), 289-293. https://doi.org/10.1557/mrs.2017.58.
- Calabro, F., Lee, K.P. and Mattia, D. (2013), "Modeling flow enhancement in nanochannels: Viscosity and slippage", Appl. Math. Lett., 26(10), 991-994. https://doi.org/10.1016/j.aml.2013.05.004.
- Chan, D.Y.C. and Horn, R.G. (1985), "The drainage of thin liquid films between solid surfaces", J. Chem. Phys., 83(10), 5311-5324. https://doi.org/10.1063/1.449693.
- Chauveteau, G., Tirrell, M. and Omari, A. (1984), "Concentration dependence of the effective viscosity of polymer solutions in small pores with repulsive or attractive walls", J. Colloid. Interf. Sci., 100(1), 41-54. https://doi.org/10.1016/0021-9797(84)90410-7.
- Debye, P. and Cleland, R.L. (1959), "Flow of liquid hydrocarbons in porous vycor", J. Appl. Phys., 30(6), 843-849. https://doi.org/10.1063/1.1735251.
- Derjaguin, B.V., Popovskij, Y.M. and Altoiz, B.A. (1983), "Liquid-crystalline state of the wall-adjacent layers of some polar liquids", J. Colloid. Interf. Sci., 96(2), 492-503. https://doi.org/10.1016/0021-9797(83)90051-6.
- Everett, D.H. and Findenegg, G.H. (1969), "Calorimetric evidence for the structure of films adsorbed at the solid/liquid interface: The heats of wetting of 'Graphon' by some n-alkanes", Nature, 223(5201), 52. https://doi.org/10.1038/223052a0.
- Findenegg, G.H. (1971), "The volumetric behavior of hydrocarbon liquids near the graphon surface", J. Colloid. Interf. Sci., 35(2), 249-253. https://doi.org/10.1016/0021-9797(71)90117-2.
- Fissel, W.H., Dubnisheva, A., Eldridge, A.N., Fleischman, A.J., Zydney, A.L. and Roy, S. (2009), "High-performance silicon nanopore hemofiltration membranes", J. Membr. Sci., 326(1), 58-63. http://doi.org/10.1016/j.memsci.2008.09.039.
- Grosse-Rhode, M. and Findenegg, G.H. (1978), "Formation of ordered monolayers of n-alkanes at the cleavage face of nickel chloride", J. Colloid. Interf. Sci., 64(2), 374-376. https://doi.org/10.1016/0021-9797(78)90375-2.
- Jackson, E.A. and Hillmyer, M.A. (2010), "Nanoporous membranes derived from block copolymers: From drug delivery to water filtration", ACS Nano., 4(7), 3548-3553. http://doi.org/10.1021/nn1014006.
- Jung, J., Shin, B., Park, K.Y., Won, S. and Cho, J. (2019), "Pilot scale membrane separation of plating wastewater by nanofiltration and reverse osmosis", Membr. Water Treat., 10(3), 239-244. https://doi.org/10.12989/mwt.2019.10.3.239.
- Kern, H., Rybinski, W.V. and Findenegg, G.H. (1977), "Prefreezing of liquid n-alkanes near graphite surfaces", J. Colloid. Interf. Sci., 59(2), 301-307. https://doi.org/10.1016/0021-9797(77)90012-1.
- Li, N., Yu, S., Harrell, C. and Martin, C.R. (2004), "Conical nanopore membranes: Preparation and transport properties", Anal. Chem., 76(7) 2025-30. http://dx.doi.org/10.1021/ac035402e.
- Liu, J., Chen, S., Nie, X. and Robbins, M.O. (2007), "A continuum-atomistic simulation of heat transfer in micro- and nano- flows", J. Comput. Phys., 227(1), 279-291. https://doi.org/10.1016/j.jcp.2007.07.014.
- Majumder, M., Chopra, N., Andrews, R. and Hinds, B.J. (2005), "Enhanced flow in carbon nanotubes", Nature, 438(7064), 44. https://doi.org/10.1038/438044a.
- Mattia, D. and Calabro, F. (2012), "Explaining high flow rate of water in carbon nanotubes via solid-liquid molecular interactions", Microfluid. Nanofluid., 13(1), 125-130. https://doi.org/10.1007/s10404-012-0949-z.
- Mattia, D., Lee, K.P. and Calabro, F. (2014), "Water permeation in carbon nanotube membranes", Current Opinion Chem. Eng., 4, 32-37. https://doi.org/10.1016/j.coche.2014.01.006.
- Myers, T.G. (2011), "Why are slip lengths so large in carbon nanotubes", Microfluid. Nanofluid., 10(5), 1141-1145. https://doi.org/10.1007/s10404-010-0752-7.
- Nie, X.B., Chen, S. and Robbins, M.O. (2004), "A continuum and molecular dynamics hybrid method for micro- and nano-fluid flow", J. Fluid Mech., 500, 55-64. https://doi.org/10.1017/S0022112003007225.
- Omidvar, M., Soltaneih, M., Mousavi, S.M., Saljoughi, E., Moarefian, A. and Saffaran, H. (2015), "Preparation of hydrophilic nanofiltration membranes for removal of pharmaceuticals from water", J. Environ. Health., 13(1), 42. https://doi.org/10.1186/s40201-015-0201-3.
- Rashidi, H., Meriam, N., Sulaiman, N., Hashim, N.A., Bradford, L., Asgharnejad, H. and Larijani, M. (2020), "Development of the ultra/nano filtration system for textile industry wastewater treatment", Membr. Water Treat., 11(5), 333-344. https://doi.org/10.12989/mwt.2020.11.5.333.
- Sofos, F., Karakasidis, T. and Sarris, I.E. (2020), "Molecular dynamics simulations of ion drift in nanochannel water flow", Nanomaterials, 10(12), 2373. https://doi.org/10.3390/nano10122373.
- Sofos, F., Karakasidis, T. and Spetsiotis, D. (2020), "Molecular dynamics simulations of ion separation in nano-channel water flows using an electric field", Mol. Simulat., 45(17), 1395-1402. https://doi.org/10.1080/08927022.2019.1637520.
- Somers, S.A. and Davis, H.T. (1992), "Microscopic dynamics of fluids confined between smooth and atomically structured solid surfaces", J. Chem. Phys., 96(7), 5389-5407. https://doi.org/10.1063/1.462724.
- Sun, J., He, Y. and Tao, W.Q. (2010), "Scale effect on flow and thermal boundaries in micro-/nano- channel flow using molecular dynamics-continuum hybrid simulation method", Int. J. Numer. Meth. Eng., 81(2), 207-228. https://doi.org/10.1002/nme.2683.
- Surwade, S.P., Smirnov, S.N., Vlassiouk, I.V., Unocic, R.R., Veith, G.M., Dai, S. and Mahurin, S.M. (2015), "Water desalination using nanoporous single-layer grapheme", Nat. Nanotechnol., 10(5), 459-464. https://doi.org/10.1038/nnano.2015.37.
- Tiraferri, A., Yip, N.Y., Phillip, W.A., Schiffman, J.D. and Elimelech, M. (2011), "Relating performance of thin-film composite forward osmosis membranes to support layer formation and structure", J. Membr. Sci., 367(1-2), 340-352. http://doi.org/10.1016/j.memsci.2010.11.014.
- Whitby, M. and Quirke, N. (2007), "Fluid flow in carbon nanotubes and nanopipes", Nat. Nanotechnol., 2(2), 87-94. https://doi.org/10.1038/nnano.2006.175.
- Yang, S.Y., Ryu, I., Kim, H.Y., Kim, J.K., Jang, S.K. and Russell, T.P. (2006), "Nanoporous membranes with ultrahigh selectivity and flux for the filtration of viruses", Adv. Mater., 18(6), 709-712. https://doi.org/10.1002/adma.200501500.
- Yen, T.H., Soong, C.Y. and Tzeng, P.Y. (2007), "Hybrid molecular dynamics-continuum simulation for nano/mesoscale channel flows", Microfluid. Nanofluid., 3(6), 665-675. https://doi.org/10.1007/s10404-007-0202-3.
- Yip, N.Y., Tiraferri, A., Phillip, W.A., Schiffman, J.D. and Elimelech, M. (2010), "High performance thin-film composite forward osmosis membrane", Environ. Sci. Technol., 44(10), 3812-3818. http://doi.org/10.1021/es1002555.
- Zhang, Y.B. (2006), "Flow factor of non-continuum fluids in one-dimensional contact", Industr. Lubr. Tribol., 58(3), 151-169. https://doi.org/10.1108/00368790610661999.
- Zhang, Y.B. (2014), "Lubrication analysis for a line contact covering from boundary lubrication to hydrodynamic lubrication: Part I- Micro contact results", J. Comput. Theor. Nanosci., 11(1), 62-70. https://doi.org/10.1166/jctn.2014.3318.
- Zhang, Y.B. (2019), "Power loss in multiscale mass transfer", Front. Heat Mass Transf., 13, 22. http://doi.org/10.5098/hmt.13.22.
- Zhang, Y.B. (2020a), "Modeling of flow in a very small surface separation", Appl. Math. Model., 82, 573-586. http://doi.org/10.1016/j.apm.2020.01.069.
- Zhang, Y.B. (2020b), "Modeling of flow in a micro cylindrical tube with the adsorbed layer effect: Part II-Results for interfacial slippage", Int. J. Heat Mass Tran., Under Review.