DOI QR코드

DOI QR Code

Multiscale calculation results of the flow behavior in micro/nano porous filtration membrane with the adsorbed layer-fluid interfacial slippage

  • Li, Jian (College of Mechanical Engineering, Changzhou University) ;
  • Zhang, Yongbin (College of Mechanical Engineering, Changzhou University)
  • 투고 : 2021.01.18
  • 심사 : 2021.04.16
  • 발행 : 2021.05.25

초록

The paper presents the multiscale calculation results for the multiscale flow in micro/nano porous filtration membranes where the adsorbed layer effect is involved, by considering the adsorbed layer-fluid interfacial slippage. The analysis consists of the molecular scale analysis for the adsorbed layer flow and the continuum analysis for the intermediate fluid flow. The calculation results are respectively compared with the classical flow theory calculations and those based on the solid layer assumption. The adsorbed layer flow rate is also compared with the flow rate of the intermediate continuum fluid. It is shown that for a strong fluid-pore wall interaction or for a large adsorbed layer-fluid interfacial slippage the adsorbed layer can be treated as a solid layer; otherwise it should be treated as a flowing layer. The large interfacial slippage results in the flow rate through the pore far greater than the classical Hagen-Poiseuille equation calculation; it largely propels the flow of the intermediate continuum fluid and makes the adsorbed layer flow negligible particularly for the medium and strong fluid-pore wall interactions. The increasing fluid-pore wall interaction strength significantly reduces the flow rate through the pore.

키워드

참고문헌

  1. Abraham, F.F. (1978), "The interfacial density profile of a Lennard-Jones fluid in contact with a (100) Lennard-Jones wall and its relationship to idealized fluid/wall systems: A Monte Carlo simulation", J. Chem. Phys., 68(8), 3713-3716. https://doi.org/10.1063/1.436229.
  2. Atkas, O. and Aluru, N.R. (2002), "A combined continuum/DSMC technique for multiscale analysis of microfluidic filters", J. Comput. Phys., 178(2), 342-372. https://doi.org/10.1006/jcph.2002.7030.
  3. Baker, L.A. and Bird, S.P. (2008), "Nanopores: A makeover for membranes", Nat. Nanotechnol., 3, 73-74. http://doi.org/10.1038/nnano.2008.13.
  4. Brown, C.E., Everett, D.H., Powell, A.V. and Thome, P.E. (1975), "Adsorption and structuring phenomena at the solid/liquid interface", Faraday Discuss., 59, 97-108. https://doi.org/10.1039/DC9755900097.
  5. Calabro, F. (2017), "Modeling the effects of material chemistry on water flow enhancement in nanotube membranes", MRS Bull., 42(4), 289-293. https://doi.org/10.1557/mrs.2017.58.
  6. Calabro, F., Lee, K.P. and Mattia, D. (2013), "Modeling flow enhancement in nanochannels: Viscosity and slippage", Appl. Math. Lett., 26(10), 991-994. https://doi.org/10.1016/j.aml.2013.05.004.
  7. Chan, D.Y.C. and Horn, R.G. (1985), "The drainage of thin liquid films between solid surfaces", J. Chem. Phys., 83(10), 5311-5324. https://doi.org/10.1063/1.449693.
  8. Chauveteau, G., Tirrell, M. and Omari, A. (1984), "Concentration dependence of the effective viscosity of polymer solutions in small pores with repulsive or attractive walls", J. Colloid. Interf. Sci., 100(1), 41-54. https://doi.org/10.1016/0021-9797(84)90410-7.
  9. Debye, P. and Cleland, R.L. (1959), "Flow of liquid hydrocarbons in porous vycor", J. Appl. Phys., 30(6), 843-849. https://doi.org/10.1063/1.1735251.
  10. Derjaguin, B.V., Popovskij, Y.M. and Altoiz, B.A. (1983), "Liquid-crystalline state of the wall-adjacent layers of some polar liquids", J. Colloid. Interf. Sci., 96(2), 492-503. https://doi.org/10.1016/0021-9797(83)90051-6.
  11. Everett, D.H. and Findenegg, G.H. (1969), "Calorimetric evidence for the structure of films adsorbed at the solid/liquid interface: The heats of wetting of 'Graphon' by some n-alkanes", Nature, 223(5201), 52. https://doi.org/10.1038/223052a0.
  12. Findenegg, G.H. (1971), "The volumetric behavior of hydrocarbon liquids near the graphon surface", J. Colloid. Interf. Sci., 35(2), 249-253. https://doi.org/10.1016/0021-9797(71)90117-2.
  13. Fissel, W.H., Dubnisheva, A., Eldridge, A.N., Fleischman, A.J., Zydney, A.L. and Roy, S. (2009), "High-performance silicon nanopore hemofiltration membranes", J. Membr. Sci., 326(1), 58-63. http://doi.org/10.1016/j.memsci.2008.09.039.
  14. Grosse-Rhode, M. and Findenegg, G.H. (1978), "Formation of ordered monolayers of n-alkanes at the cleavage face of nickel chloride", J. Colloid. Interf. Sci., 64(2), 374-376. https://doi.org/10.1016/0021-9797(78)90375-2.
  15. Jackson, E.A. and Hillmyer, M.A. (2010), "Nanoporous membranes derived from block copolymers: From drug delivery to water filtration", ACS Nano., 4(7), 3548-3553. http://doi.org/10.1021/nn1014006.
  16. Jung, J., Shin, B., Park, K.Y., Won, S. and Cho, J. (2019), "Pilot scale membrane separation of plating wastewater by nanofiltration and reverse osmosis", Membr. Water Treat., 10(3), 239-244. https://doi.org/10.12989/mwt.2019.10.3.239.
  17. Kern, H., Rybinski, W.V. and Findenegg, G.H. (1977), "Prefreezing of liquid n-alkanes near graphite surfaces", J. Colloid. Interf. Sci., 59(2), 301-307. https://doi.org/10.1016/0021-9797(77)90012-1.
  18. Li, N., Yu, S., Harrell, C. and Martin, C.R. (2004), "Conical nanopore membranes: Preparation and transport properties", Anal. Chem., 76(7) 2025-30. http://dx.doi.org/10.1021/ac035402e.
  19. Liu, J., Chen, S., Nie, X. and Robbins, M.O. (2007), "A continuum-atomistic simulation of heat transfer in micro- and nano- flows", J. Comput. Phys., 227(1), 279-291. https://doi.org/10.1016/j.jcp.2007.07.014.
  20. Majumder, M., Chopra, N., Andrews, R. and Hinds, B.J. (2005), "Enhanced flow in carbon nanotubes", Nature, 438(7064), 44. https://doi.org/10.1038/438044a.
  21. Mattia, D. and Calabro, F. (2012), "Explaining high flow rate of water in carbon nanotubes via solid-liquid molecular interactions", Microfluid. Nanofluid., 13(1), 125-130. https://doi.org/10.1007/s10404-012-0949-z.
  22. Mattia, D., Lee, K.P. and Calabro, F. (2014), "Water permeation in carbon nanotube membranes", Current Opinion Chem. Eng., 4, 32-37. https://doi.org/10.1016/j.coche.2014.01.006.
  23. Myers, T.G. (2011), "Why are slip lengths so large in carbon nanotubes", Microfluid. Nanofluid., 10(5), 1141-1145. https://doi.org/10.1007/s10404-010-0752-7.
  24. Nie, X.B., Chen, S. and Robbins, M.O. (2004), "A continuum and molecular dynamics hybrid method for micro- and nano-fluid flow", J. Fluid Mech., 500, 55-64. https://doi.org/10.1017/S0022112003007225.
  25. Omidvar, M., Soltaneih, M., Mousavi, S.M., Saljoughi, E., Moarefian, A. and Saffaran, H. (2015), "Preparation of hydrophilic nanofiltration membranes for removal of pharmaceuticals from water", J. Environ. Health., 13(1), 42. https://doi.org/10.1186/s40201-015-0201-3.
  26. Rashidi, H., Meriam, N., Sulaiman, N., Hashim, N.A., Bradford, L., Asgharnejad, H. and Larijani, M. (2020), "Development of the ultra/nano filtration system for textile industry wastewater treatment", Membr. Water Treat., 11(5), 333-344. https://doi.org/10.12989/mwt.2020.11.5.333.
  27. Sofos, F., Karakasidis, T. and Sarris, I.E. (2020), "Molecular dynamics simulations of ion drift in nanochannel water flow", Nanomaterials, 10(12), 2373. https://doi.org/10.3390/nano10122373.
  28. Sofos, F., Karakasidis, T. and Spetsiotis, D. (2020), "Molecular dynamics simulations of ion separation in nano-channel water flows using an electric field", Mol. Simulat., 45(17), 1395-1402. https://doi.org/10.1080/08927022.2019.1637520.
  29. Somers, S.A. and Davis, H.T. (1992), "Microscopic dynamics of fluids confined between smooth and atomically structured solid surfaces", J. Chem. Phys., 96(7), 5389-5407. https://doi.org/10.1063/1.462724.
  30. Sun, J., He, Y. and Tao, W.Q. (2010), "Scale effect on flow and thermal boundaries in micro-/nano- channel flow using molecular dynamics-continuum hybrid simulation method", Int. J. Numer. Meth. Eng., 81(2), 207-228. https://doi.org/10.1002/nme.2683.
  31. Surwade, S.P., Smirnov, S.N., Vlassiouk, I.V., Unocic, R.R., Veith, G.M., Dai, S. and Mahurin, S.M. (2015), "Water desalination using nanoporous single-layer grapheme", Nat. Nanotechnol., 10(5), 459-464. https://doi.org/10.1038/nnano.2015.37.
  32. Tiraferri, A., Yip, N.Y., Phillip, W.A., Schiffman, J.D. and Elimelech, M. (2011), "Relating performance of thin-film composite forward osmosis membranes to support layer formation and structure", J. Membr. Sci., 367(1-2), 340-352. http://doi.org/10.1016/j.memsci.2010.11.014.
  33. Whitby, M. and Quirke, N. (2007), "Fluid flow in carbon nanotubes and nanopipes", Nat. Nanotechnol., 2(2), 87-94. https://doi.org/10.1038/nnano.2006.175.
  34. Yang, S.Y., Ryu, I., Kim, H.Y., Kim, J.K., Jang, S.K. and Russell, T.P. (2006), "Nanoporous membranes with ultrahigh selectivity and flux for the filtration of viruses", Adv. Mater., 18(6), 709-712. https://doi.org/10.1002/adma.200501500.
  35. Yen, T.H., Soong, C.Y. and Tzeng, P.Y. (2007), "Hybrid molecular dynamics-continuum simulation for nano/mesoscale channel flows", Microfluid. Nanofluid., 3(6), 665-675. https://doi.org/10.1007/s10404-007-0202-3.
  36. Yip, N.Y., Tiraferri, A., Phillip, W.A., Schiffman, J.D. and Elimelech, M. (2010), "High performance thin-film composite forward osmosis membrane", Environ. Sci. Technol., 44(10), 3812-3818. http://doi.org/10.1021/es1002555.
  37. Zhang, Y.B. (2006), "Flow factor of non-continuum fluids in one-dimensional contact", Industr. Lubr. Tribol., 58(3), 151-169. https://doi.org/10.1108/00368790610661999.
  38. Zhang, Y.B. (2014), "Lubrication analysis for a line contact covering from boundary lubrication to hydrodynamic lubrication: Part I- Micro contact results", J. Comput. Theor. Nanosci., 11(1), 62-70. https://doi.org/10.1166/jctn.2014.3318.
  39. Zhang, Y.B. (2019), "Power loss in multiscale mass transfer", Front. Heat Mass Transf., 13, 22. http://doi.org/10.5098/hmt.13.22.
  40. Zhang, Y.B. (2020a), "Modeling of flow in a very small surface separation", Appl. Math. Model., 82, 573-586. http://doi.org/10.1016/j.apm.2020.01.069.
  41. Zhang, Y.B. (2020b), "Modeling of flow in a micro cylindrical tube with the adsorbed layer effect: Part II-Results for interfacial slippage", Int. J. Heat Mass Tran., Under Review.