참고문헌
- Abrishambaf, A., Barros, J.A. and Cunha, V.M. (2015), "Tensile stress-crack width law for steel fibre reinforced self-compacting concrete obtained from indirect (splitting) tensile tests", Cement Concrete Compos., 57, 153-165. https://doi.org/10.1016/j.cemconcomp.2014.12.010
- Akbas, S. (2016), "Analytical solutions for static bending of edge cracked micro beams", Struct. Eng. Mech., Int. J., 59(3), 66-78. https://doi.org/10.12989/sem.2016.59.3.579
- Albegmprli, H.M., Gulsan, M.E. and Cevik, A. (2019), "Comprehensive experimental investigation on mechanical behavior for types of reinforced concrete Haunched beam", Adv. Concrete Constr., Int. J., 7(1), 39-50. https://doi.org/10.12989/acc.2019.7.1.039
- Alhussainy, F., Hasan, H.A., Rogic, S., Sheikh, M.N. and Hadi, M.N. (2016), "Direct tensile testing of self-compacting concrete", Constr. Build. Mater., 112, 903-906. https://doi.org/10.1016/j.conbuildmat.2016.02.215
- Aliabadian, Z., Zhao, G.F. and Russell, A.R. (2019), "Failure, crack initiation and the tensile strength of transversely isotropic rock using the Brazilian test", Int. J. Rock Mech. Mining Sci., 122, 104073. https://doi.org/10.1016/j.ijrmms.2019.104073
- ASTM D2936-08 (2008), Standard test method for splitting tensile strength of intact rock core specimens, Annual Book of ASTM Standards, Vol. 4, ASTM, West Conshohocken, PA, USA.
- ASTM D3967-16 (2016), Standard Test Method for Splitting Tensile Strength of Intact Rock Core Specimens, Annual Book of ASTM Standards, Vol. 4, ASTM, West Conshohocken, PA, USA.
- Bieniawski, Z.T. and Hawkes, I. (1978), "Suggested method for determining tensile strength of rock materials", Int. J. Rock Mech. Mining Sci. & Geomechanics Abstracts, 15, 99-103. https://doi.org/10.1016/0148-9062(78)91677-7
- Chen, W.F. and Trumbauer, B.E. (1972), "Double-punch test and tensile strength of concrete", J. Mater. ASTM, 7(2), 148-154.
- Crouch, S.L. (1976), "Analysis of stresses and displacements around underground excavations: an application of the displacement discontinuity method", University of Minnesota Geomechanics Report, Minneapolis, MN, USA.
- Cundall, P.A. and Strack, O.D.L. (1979), "A discrete numerical model for granular assemblies", Geotechnique, 29(1), 47-65. https://doi.org/10.1680/geot.1979.29.1.47
- Denneman, E., Kearsley, E.P. and Visser, A.T. (2011), "Splitting tensile test for fibre re-inforced concrete", Mater. Struct., 44(8), 1441-1449. https://doi.org/10.1617/s11527-011-9709-x
- Erarslan, N. and Williams, D.J. (2012), "Experimental, numerical and analytical studies on tensile strength of rocks", Int. J. Rock Mech. Min. Sci., 49, 21-30. https://doi.org/10.1016/j.ijrmms.2011.11.007
- Forti, T.L., Forti, N., Santos, F.L. and Carnio, M.A. (2019), "The continuous-discontinuous Galerkin method applied to crack propagation", Comput. Concrete, Int. J., 23(4), 235-243. https://doi.org/10.12989/cac.2019.23.4.235
- Ghaffar, A., Chaudhry, M.A. and Ali, M.K. (2005), "A new approach for measurement of tensile strength of concrete", J. Res. Sci., Bahauddin Zakariya Univ., Multan, Pakistan, 16(1), 1-9.
- Gorski, B., Conlon, B. and Ljunggren, B. (2007), "Determination of the direct and indirect tensile strength on cores from borehole KFM01D", CANMET-MMSL, Mining and Mineral Sciences Laboratories, Natural Resources Canada, pp. 7-76.
- Haeri, H., Khaloo, A. and Marji, M.F. (2015), "Fracture analyses of different pre-holed concrete specimens under compression", Acta mechanica sinica, 31(6), 855-870. https://doi.org/10.1007/s10409-015-0436-3
- Hannant, D.J. (1972), "The tensile strength of concrete: a review paper", Struct. Eng., 50(7), 253-257.
- Hosseini_Nasab, H. and Fatehi Marji, M. (2007), "A semi-infinite higher-order displacement discontinuity method and its application to the quasistatic analysis of radial cracks produced by blasting", J. Mech. Mater. Struct., 2(3), 439-458. https://doi.org/10.2140/jomms.2007.2.439
- Hu, S., Xu, A., Hu, X. and Yin, Y. (2016), "Study on fracture characteristics of reinforced concrete wedge splitting tests", Comput. Concrete, Int. J., 18(3), 337-354. https://doi.org/10.12989/cac.2016.18.3.337
- Itasca Consulting Group Inc. (2003), PFC2D (particle flow code in 2dimensions) version 3.0, 41(8), 1329-1364.
- Khan, M.I. (2012), "Direct tensile strength measurement of concrete", Appl. Mech. Mater., 117, 9-14. https://doi.org/10.4028/www.scientific.net/AMM.117-119.9
- Kim, J. and Taha, M.R. (2014), "Experimental and numerical evaluation of direct tension test for cylindrical concrete specimens", Adv. Civ. Eng., 1-8. https://doi.org/10.1155/2014/156926
- Li, S., Wang, H., Li, Y., Li, Q., Zhang, B. and Zhu, H. (2016), "A new mini-grating absolute displacement measuring system for static and dynamic geomechanical model tests", Measurement, 82, 421-431. https://doi.org/10.1016/j.measurement.2017.04.002
- Liao, Z.Y., Zhu, J.B. and Tang, C.A. (2019), "Numerical investigation of rock tensile strength determined by direct tension, Brazilian and three-point bending tests", Int. J. Rock Mech. Mining Sci., 115, 21-32. https://doi.org/10.1016/j.ijrmms.2019.01.007
- Liu, Y.I., Dai, F., Xu, N., Zhao, T. and Feng, P. (2018), "Experimental and numerical investigation on the tensile fatigue properties of rocks using the cyclic flattened Brazilian disc method", Soil Dyn. Earthq. Eng., 105, 68-82. https://doi.org/10.1016/j.soildyn.2017.11.025
- Marji, M.F. (1997), "Modelling of cracks in rock fragmentation with a higher order displacement discontinuity method", Ph.D. Thesis in Mining Engineering (Rock Mechanics), 1(1), 167.
- Marji, M.F. (2013), "On the use of power series solution method in the crack analysis of brittle materials by indirect boundary element method", Eng. Fract. Mech., 98, 365-382. https://doi.org/10.1016/j.engfracmech.2012.11.015
- Marji, M.F., Hosseini-Nasab, H. and Kohsary, A.H. (2007), "A new cubic element formulation of the displacement discontinuity method using three special crack tip elements for crack analysis", JP J. Solids Struct., 1(1), 61-91.
- Martin, C.D. (2014), "The direct and Brazilian tensile strength of rock in the light of size effect and bimodularity", American Rock Mechanics Association, 48th U.S. Rock Mechanics/Geomechanics Symposium, June, Minneapolis, MN, USA.
- Maruvanchery, V. and Kim, E. (2019), "Effects of water on rock fracture properties: Studies of mode I fracture toughness, crack propagation velocity, and consumed energy in calcite-cemented sandstone", Geomech. Eng., Int. J., 17(1), 57-67. https://doi.org/10.12989/gae.2019.17.1.057
- Mosaberpanah, M.A. and Eren, O. (2016), "Statistical flexural toughness modeling of ultra-high performance concrete using response surface method", Comput. Concrete, Int. J., 17(4), 33-39. https://doi.org/10.12989/cac.2016.17.4.477
- Omar, H., Ahmad, J., Nahazanan, H., Mohammed, T.A. and Yusoff, Z.M. (2018), "Measurement and simulation of diametrical and axial indirect tensile tests for weak rocks", Measurement, 127, 299-307. https://doi.org/10.1016/j.measurement.2018.05.067
- Pan, B., Gao, Y. and Zhong, Y. (2014), "Theoretical analysis of overlay resisting crack propagation in old cement concrete pavement", Struct. Eng. Mech., Int. J., 52(4), 167-181. https://doi.org/10.1007/978-94-007-4566-7_51
- Potyondy, D.O. and Cundall, P.A. (2004), "A bonded-particle model for rock", Int. J. Rock Mech. Min. Sci., 41(8), 1329-1364. https://doi.org/10.1016/j.ijrmms.2004.09.011
- Ramadoss, P. and Nagamani, K. (2013), "Stress-strain behavior and toughness of high-performance steel fiber reinforced concrete in compression", Comput. Concrete, Int. J., 11(2), 55-65. https://doi.org/10.12989/cac.2013.11.2.149
- Sanford, R.J. (2003), Principles of Fracture Mechanics, Pearson Education, hIC., Upper Saddle River, NJ, USA, pp. 1-15.
- Sardemir, M. (2016), "Empirical modeling of flexural and splitting tensile strengths of concrete containing fly ash by GEP", Comput. Concrete, Int. J., 17(4), 489-498. https://doi.org/10.12989/cac.2016.17.4.489
- Sarfarazi, V., Faridi, H.R., Haeri, H. and Schubert, W. (2015), "A new approach for measurement of anisotropic tensile strength of concrete", Adv. Concrete Constr., Int. J., 3(4), 269-282. https://doi.org/10.12989/acc.2015.3.4.269
- Sarfarazi, V., Haeri, H. and Shemirani, A.B. (2017), "Direct and indirect methods for determination of mode I fracture toughness using PFC2D", Comput. Concrete, Int. J., 20(1), 1-10. https://doi.org/10.12989/cac.2017.20.1.039
- Shang, J., Duan, K., Gui, Y., Handley, K. and Zhao, Z. (2018), "Numerical investigation of the direct tensile behaviour of laminated and transversely isotropic rocks containing incipient bedding planes with different strengths", Comput. Geotech., 104, 373-388. https://doi.org/10.1016/j.compgeo.2017.11.007
- Shou, K.J. and Crouch, S.L. (1995), "A higher order displacement discontinuity method for analysis of crack problems", Int. J. Rock Mech. Min. Sci. Geomech. Abstract, 32, 49-55. https://doi.org/10.1016/0148-9062(94)00016-V
- Shuraim, A.B., Aslam, F., Hussain, R.R. and Alhozaimy, A.M. (2016), "Analysis of punching shear in high strength RC panelsexperiments, comparison with codes and FEM results", Comput. Concrete, Int. J., 17(6), 739-760. https://doi.org/10.12989/cac.2016.17.6.739
- Silva, R.V., De Brito, J. and Dhir, R.K. (2015), "Tensile strength behaviour of recycled aggregate concrete", Constr. Build. Mater., 83, 108-118. https://doi.org/10.1016/j.conbuildmat.2015.03.034
- Sun, W., Du, H., Zhou, F. and Shao, J. (2019), "Experimental study of crack propagation of rock-like specimens containing conjugate fractures", Geomech. Eng., Int. J., 17(4), 323-331. https://doi.org/10.12989/gae.2019.17.4.323
- Swaddiwudhipong, S., Lu, H.R. and Wee, T.H. (2003), "Direct tension test and tensile strain capacity of concrete at early age", Cem. Concr. Res., 33, 2077-2084. https://doi.org/10.1016/S0008-8846(03)00231-X
- Tran, K.Q., Satomi, T. and Takahashi, H. (2019), "Tensile behaviors of natural fiber and cement reinforced soil subjected to direct tensile test", J. Build. Eng., 24, 100748. https://doi.org/10.1016/j.jobe.2019.100748
- Wang, Q.Z., Jia, X.M., Kou, S.Q., Zhang, Z.X. and Lindqvist, P.A. (2004), "The flattened Brazilian disc specimen used for testing elastic modulus, tensile strength and fracture toughness of brittle rocks: analytical and numerical results", Int. J. Rock Mech. Min. Sci., 41, 245-253. https://doi.org/10.1016/S1365-1609(03)00093-5
- Wei, X.X. and Chau, K.T. (2013), "Three dimensional analytical solution for finite circular cylinders subjected to indirect tensile test", Int. J. Solids Struct., 50, 2395-2406. https://doi.org/10.1016/j.ijsolstr.2013.03.026
- Whittaker, B.N., Singh, R.N. and Sun, G. (1992), "Rock fracture mechanics. Principles, design and applications", Developments in Geotechnical Engineering, 71. Elsevier, Amsterdam, Netherlands.
- Xie, N.X. and Liu, W.Y. (1989), "Determining tensile properties of mass concrete by direct tensile test", ACI Mater. J., 86(3), 214-219.
- Yaylaci, M. (2016), "The investigation crack problem through numerical analysis", Struct. Eng. Mech., Int. J., 57(6), https://doi.org/10.12989/sem.2016.57.6.1143
- Zain, M.F.M., Mahmud, H.B., Ilham, A. and Faizal, M. (2002), "Prediction of splitting tensile strength of high-performance concrete", Cem. Concr. Res., 32, 1251-1257. https://doi.org/10.1016/S0008-8846(02)00768-8
- Zhang, Z.X. (2002), "An empirical relation between mode I fracture toughness and the tensile strength of rock", Int. J. Rock Mech. Mining Sci. & Geomech. Abstracts, 93, 401-406. https://doi.org/10.1016/S1365-1609(02)00032-1
- Zhang, D., Hou, S., Bian, J. and He, L. (2016), "Investigation of the micro-cracking behavior of asphalt mixtures in the indirect tensile test", Eng. Fract. Mech., 163, 416-425. https://doi.org/10.1016/j.engfracmech.2016.05.020
- Zheng, W., Kwan, A.K.H. and Lee, P.K.K. (2001), "Direct tension test of concrete", ACI Mater. J., 98(1), 63-71.
- Zhou, F.P. (1988), "Some aspects of tensile fracture behaviour and structural response of cementitious materials", Report TVBM-1008, Division of Building Materials, Lund Institute of Technology.