DOI QR코드

DOI QR Code

Structural identification of the dynamic behavior of floor diaphragms in existing buildings

  • Sivori, Daniele (Department of Civil, Chemical and Environmental Engineering (DICCA), University of Genoa) ;
  • Lepidi, Marco (Department of Civil, Chemical and Environmental Engineering (DICCA), University of Genoa) ;
  • Cattari, Serena (Department of Civil, Chemical and Environmental Engineering (DICCA), University of Genoa)
  • Received : 2020.08.25
  • Accepted : 2020.11.25
  • Published : 2021.02.25

Abstract

The deformability of floor diaphragms plays a primary role in the structural behavior of existing buildings. Nonetheless, few structural identification procedures are available to investigate this matter from in-situ experimental measurements. Ambient vibration tests can be very useful to the purpose, allowing to assess the importance of the floor deformability in operational modal analyses through model-driven approaches. This information is particularly valuable for unreinforced masonry buildings, often characterized by deformable diaphragms whose effective stiffness is commonly unknown and hard to be evaluated. Based on these motivations, in this paper, a discrete linear model of deformable diaphragm is formulated in a novel fashion. The modal properties governing the free undamped dynamics are analytically determined through a fully general perturbation technique (direct problem). Therefore, a model-based structural identification procedure is proposed to analytically assess the inertial and elastic properties of the deformable diaphragm (inverse problem), assuming the outcomes of experimental modal analyses as known input. Consistently with the perturbation approach, explicit formulas are determined for low-order minimal models and higher-order model updating, accounting for mass and inertial eccentricities. Among the other identifiable mechanical parameters, the focus is put on the first and second-order identification of the in-plane shear stiffness of the diaphragm. The theoretical developments are successfully verified on pseudo-experimental and experimental bases, by applying the identification procedure to (i) the computational model of a prototypical steel frame structure, (ii) the large scale laboratory model of a two-story composite structure with mass eccentricities, (iii) a permanently monitored masonry building recently struck by the 2016-2017 Central Italy earthquake sequence.

Keywords

Acknowledgement

The results presented in this paper are obtained with the partial funding of the ReLUIS Project 2019-2021 (Work Package 6). Moreover, the validation carried out on the Pizzoli town hall benefited of the data made available by the Italian structural seismic monitoring network (OSS) of the Italian Department of Civil Protection, within the research activities of ReLUIS Project 2017-2018 (WP4 Task 4.1).

References

  1. Allemang, R.J. (2003), "The modal assurance criterion - Twenty years of use and abuse", Sound Vib., 37(8), 1423.
  2. ASCE 41-13 (2014), "Seismic Evaluation and Retrofit of Existing Buildings", Reston, VA, USA.
  3. Astorga, A., Gueguen, P., Ghimire, S. and Kashima, T. (2020), "NDE1. 0: a new database of earthquake data recordings from buildings for engineering applications", Bull. Earthq. Eng., 18(4), 1321-1344. https://doi.org/10.1007/s10518-019-00746-6
  4. Boschi, S., Galano, L. and Vignoli, A. (2019), "Mechanical characterisation of Tuscany masonry typologies by in situ tests", Bull. Earthq. Eng., 17(1), 413-438. https://doi.org/10.1007/s10518-018-0451-4
  5. Bracchi, S., Rota, M., Penna, A. and Magenes, G. (2015), "Consideration of modelling uncertainties in the seismic assessment of masonry buildings by equivalent-frame approach", Bull. Earthq. Eng., 13(11), 3423-3448. https://doi.org/10.1007/s10518-015-9760-z
  6. Brincker, R., Zhang, L. and Andersen, P. (2001), "Modal identification of output-only systems using frequency domain decomposition", Smart Mater. Struct., 10(3), 441. https://doi.org/doi:10.1088/0964-1726/10/3/303
  7. Cardone, D., Perrone, G. and Flora, A. (2020), "Displacement-Based Simplified Seismic Loss Assessment of Pre70S RC Buildings", J. Earthq. Eng., 24(sup1), 82-113. https://doi.org/10.1080/13632469.2020.1716890
  8. Cattari, S., Resemini, S. and Lagomarsino, S. (2008), "Modelling of vaults as equivalent diaphragms in 3D seismic analysis of masonry buildings", In: Structural Analysis of Historic Construction: Preserving Safety and Significance, Two Volume Set (pp. 537-544), CRC Press.
  9. Cattari, S., Lagomarsino, S., Karatzetzou, A. and Pitilakis, D. (2015), "Vulnerability assessment of Hassan Bey's mansion in Rhodes", Bull. Earthq. Eng., 13(1), 347-368. https://doi.org/10.1007/s10518-014-9613-1
  10. Cattari, S., Degli Abbati, S., Ottonelli, D., Marano, C., Camata, G., Spacone, E., Da Porto, F., Modena, C., Lorenzoni, F., Magenes, G. and Penna, A. (2019), "Discussion on data recorded by the Italian structural seismic monitoring network on three masonry structures hit by the 2016-2017 Central Italy earthquake", Proceedings of the 7th International Conference on Computational Methods in Structural Dynamics and Earthquake Engineering (COMPDYN2019), Crete, Greece. https://doi.org/10.7712/120119.7044.20004
  11. Circular 21/1/19 No. 7 (2019), "Istruzioni per l'applicazione dell'aggiornamento delle norme tecniche per le costruzioni di cui al Decreto Ministeriale 17 Gennaio 2018", Ministry of Infrastructures and Transportation, Rome, Italy. [In Italian]
  12. Degli Abbati, S., Morandi, P., Spacone, E. (2021), "On the reliability of the equivalent frame models: the case study of the permanently monitored Pizzoli's town hall", Bull. Earthq. Eng. [Submitted]
  13. Del Gaudio, C., De Martino, G., Di Ludovico, M., Manfredi, G., Prota, A., Ricci, P. and Verderame, G.M. (2019), "Empirical fragility curves for masonry buildings after the 2009 L'Aquila, Italy, earthquake", Bull. Earthq. Eng., 17(11), 6301-6330. https://doi.org/10.1007/s10518-019-00683-4
  14. Del Vecchio, C., Di Ludovico, M., Pampanin, S. and Prota, A. (2018), "Repair costs of existing RC buildings damaged by the L'Aquila earthquake and comparison with FEMA P58 predictions", Earthq. Spectra, 34(1), 237-263. https://doi.org/10.1193/122916EQS257M
  15. Del Vecchio, C., Di Ludovico, M. and Prota, A. (2020), "Repair costs of reinforced concrete building components: from actual data analysis to calibrated consequence functions", Earthq. Spectra, 36(1), 353-377. https://doi.org/10.1193/122916EQS257M
  16. Derkevorkian, A., Masri, S.F., Fujino, Y. and Siringoringo, D.M. (2014), "Development and validation of nonlinear computational models of dispersed structures under strong earthquake excitation", Earthq. Eng. Struct. Dyn., 43(7), 1089-1105. https://doi.org/10.1002/eqe.2389
  17. Di Ludovico, M., Prota, A., Moroni, C., Manfredi, G. and Dolce, M. (2017a), "Reconstruction process of damaged residential buildings outside historical centres after the L'Aquila earthquake: part I-"light damage" reconstruction", Bull. Earthq. Eng., 15(2), 667-692. https://doi.org/10.1007/s10518-016-9877-8
  18. Di Ludovico, M., Prota, A., Moroni, C., Manfredi, G. and Dolce, M. (2017b), "Reconstruction process of damaged residential buildings outside historical centres after the L'Aquila earthquake: part II-"heavy damage" reconstruction", Bull. Earthq. Eng., 15(2), 693-729. https://doi.org/10.1007/s10518-016-9979-3
  19. Dizhur, D., Wei, S., Giaretton, M., Schultz, A.E., Ingham, J.M. and Giongo, I. (2020), "Testing of URM wall-to-diaphragm through-bolt plate anchor connections", Earthq. Spectra, 8755293020944187. https://doi.org/10.1177/8755293020944187
  20. Dolce, M., Ponzo, F.C., Di Cesare, A., Ditommaso, R., Moroni, C., Nigro, D., Serino, G., Sorace, S., Gattulli, V., Occhiuzzi, A., Vulcano, A., Foti, D. (2008), "Jetpacs project: joint experimental testing on passive and semiactive control systems", Proceedings of the 14th World Conference on Earthquake Engineering (14WCEE), Beijing, China. https://doi.org/10.1080/13632469.2012.657335
  21. Dolce, M., Nicoletti, M., De Sortis, A., Marchesini, S., Spina, D. and Talanas, F. (2017), "Osservatorio sismico delle strutture: the Italian structural seismic monitoring network", Bull. Earthq. Eng., 15(2), 621-641. https://doi.org/10.1007/s10518-015-9738-x.
  22. Dolce, M., Speranza, E., Giordano, F., Borzi, B., Bocchi, F., Conte, C., Di Meo, A., Faravelli, M. and Pascale, V. (2019), "Observed damage database of past Italian earthquakes: the Da.D.O WebGIS", Bollettino di Geofisica Teorica ed Applicata, 60(2). https://doi.org/10.4430/bgta0254
  23. EN19983 (2005), "Eurocode 8: Design of structures for earthquake resistance Part 3: Assessment and retrofitting of buildings".
  24. Gattulli, V., Lepidi, M. and Potenza, F. (2009), "Seismic protection of frame structures via semiactive control: modeling and implementation issues", Earthq. Eng. Eng. Vib., 8(4), 627-645. https://doi.org/10.1007/s11803-009-9113-5
  25. Gattulli, V., Lepidi, M. and Potenza, F. (2016), "Dynamic testing and health monitoring of historic and modern civil structures in Italy", Struct. Monitor. Maint., Int. J., 3(1), 71-90. https://doi.org/10.12989/smm.2016.3.1.071
  26. Giongo, I., Dizhur, D., Tomasi, R. and Ingham, J.M. (2015), "Field testing of flexible timber diaphragms in an existing vintage URM building", J. Struct. Eng., 141(1), D4014009. https://doi.org/10.1061/(ASCE)ST.1943-541X.0001045
  27. Greco, A., Fiore, I., Occhipinti, G., Caddemi, S., Spina, D. and Calio, I. (2020), "An Equivalent Non-Uniform Beam-Like Model for Dynamic Analysis of Multi-Storey Irregular Buildings", Appl. Sci., 10(9), 3212. https://doi.org/10.3390/app10093212
  28. Haddad, J., Cattari, S. and Lagomarsino, S. (2019), "Use of the model parameter sensitivity analysis for the probabilistic-based seismic assessment of existing buildings", Bull. Earthq. Eng., 17(4), 1983-2009. https://doi.org/10.1007/s10518-018-0520-8
  29. Hajj, M.R., Fung, J., Nayfeh, A.H. and Fahey, S.F. (2000), "Damping identification using perturbation techniques and higher-order spectra", Nonlinear Dyn., 23(2), 189-203. https://doi.org/10.1023/A:1008335522973
  30. Iervolino, I., Giorgio, M. and Chioccarelli, E. (2014), "Closed-form aftershock reliability of damage-cumulating elastic-perfectly-plastic systems", Earthq. Eng. Struct. Dyn., 43(4), 613-625. https://doi.org/10.1002/eqe.2363
  31. Jaishi, B. and Ren, W.X. (2005), "Structural finite element model updating using ambient vibration test results", J. Struct. Eng., 131(4), 617-628. https://doi.org/10.1061/(ASCE)0733-9445(2005)131:4(617)
  32. Jalayer, F., Iervolino, I. and Manfredi, G. (2010), "Structural modeling uncertainties and their influence on seismic assessment of existing RC structures", Struct. Safety, 32(3), 220-228. https://doi.org/10.1016/j.strusafe.2010.02.004
  33. Karatzetzou, A., Negulescu, C., Manakou, M., Francois, B., Seyedi, D.M., Pitilakis, D. and Pitilakis, K. (2015), "Ambient vibration measurements on monuments in the Medieval City of Rhodes, Greece", Bull. Earthq. Eng., 13(1), 331-345. https://doi.org/10.1007/s10518-014-9649-2
  34. Kerschen, G., Worden, K., Vakakis, A.F. and Golinval, J.C. (2006), "Past, present and future of nonlinear system identification in structural dynamics", Mech. Syst. Signal Process., 20(3), 505-592. https://doi.org/10.1016/j.ymssp.2005.04.008
  35. Kosic, M., Fajfar, P. and Dolsek, M. (2014), "Approximate seismic risk assessment of building structures with explicit consideration of uncertainties", Earthq. Eng. Struct. Dyn., 43(10), 1483-1502. https://doi.org/10.1002/eqe.2407
  36. Krzan, M., Gostic, S., Cattari, S. and Bosiljkov, V. (2015), "Acquiring reference parameters of masonry for the structural performance analysis of historical buildings", Bull. Earthq. Eng., 13(1), 203-236. https://doi.org/10.1007/s10518-014-9686-x
  37. Kunnath, S.K., Panahshahi, N. and Reinhorn, A.M. (1991), "Seismic response of RC buildings with inelastic floor diaphragms", J. Struct. Eng., 117(4), 1218-1237. https://doi.org/10.1061/(ASCE)07339445(1991)117:4(1218)
  38. Lacarbonara, W., Carboni, B. and Quaranta, G. (2016), "Nonlinear normal modes for damage detection", Meccanica, 51(11), 2629-2645. https://doi.org/10.1007/s11012-016-0453-8
  39. Lagomarsino, S. and Giovinazzi, S. (2006), "Macroseismic and mechanical models for the vulnerability and damage assessment of current buildings", Bull. Earthq. Eng., 4(4), 415-443. https://doi.org/10.1007/s105180069024z
  40. Lagomarsino, S., Penna, A., Galasco, A. and Cattari, S. (2013), "TREMURI program: an equivalent frame model for the nonlinear seismic analysis of masonry buildings", Eng. Struct., 56, 1787-1799. https://doi.org/10.1016/j.engstruct.2013.08.002
  41. Lee, Y.S., Vakakis, A.F., McFarland, D.M. and Bergman, L.A. (2010), "A global-local approach to nonlinear system identification: a review", Struct. Control Health Monitor., 17(7), 742-760. https://doi.org/10.1002/stc.414
  42. Lepidi, M. (2013), "Multi-parameter perturbation methods for the eigensolution sensitivity analysis of nearly-resonant non-defective multi-degree-of-freedom systems", J. Sound Vib., 332(4), 1011-1032. https://doi.org/10.1016/j.jsv.2012.09.020
  43. Lepidi, M. and Bacigalupo, A. (2018), "Multi-parametric sensitivity analysis of the band structure for tetrachiral acoustic metamaterials", Int. J. Solids Struct., 136, 186-202. https://doi.org/10.1016/j.ijsolstr.2017.12.014
  44. Lepidi, M. and Gattulli, V. (2014), "A parametric multibody section model for modal interactions of cable-supported bridges", J. Sound Vib., 333(19), 4579-4596. https://doi.org/10.1016/j.jsv.2014.04.053
  45. Lofrano, E., Paolone, A. and Vasta, M. (2016), "A perturbation approach for the identification of uncertain structures", Int. J. Dyn. Control, 4(2), 204-212. https://doi.org/10.1007/s40435-015-0171-4
  46. Luongo, A. (2017), "On the use of the multiple scale method in solving 'difficult' bifurcation problems", Mathe. Mech. Solids, 22(5), 988-1004. https://doi.org/10.1177/1081286515616053
  47. Lupoi, G., Calvi, G.M., Lupoi, A. and Pinto, P.E. (2004), "Comparison of different approaches for seismic assessment of existing buildings", J. Earthq. Eng., 8(1), 121-160. https://doi.org/10.1080/13632460409350523
  48. Marino, S., Cattari, S. and Lagomarsino, S. (2019), "Are the nonlinear static procedures feasible for the seismic assessment of irregular existing masonry buildings?", Eng. Struct., 200, 109700. https://doi.org/10.1016/j.engstruct.2019.109700
  49. Michel, C., Gueguen, P. and Causse, M. (2012), "Seismic vulnerability assessment to slight damage based on experimental modal parameters", Earthq. Eng. Struct. Dyn., 41(1), 81-98. https://doi.org/10.1002/eqe.1119
  50. Mori, F. and Spina, D. (2015), "Vulnerability assessment of strategic buildings based on ambient vibrations measurements", Struct. Monitor. Maint., Int. J., 2(2), 115-132. https://doi.org/10.12989/smm.2015.2.2.115
  51. Mottershead, J.E., Link, M. and Friswell, M.I. (2011), "The sensitivity method in finite element model updating: A tutorial", Mech. Syst. Signal Process., 25(7), 2275-2296. https://doi.org/10.1016/j.ymssp.2010.10.012
  52. Nakamura, Y., Derakhshan, H., Magenes, G. and Griffith, M.C. (2017), "Influence of diaphragm flexibility on seismic response of unreinforced masonry buildings", J. Earthq. Eng., 21(6), 935-960. https://doi.org/10.1080/13632469.2016.1190799
  53. NTC (2018), "The Italian Building Code", Ministry of Infrastructures and Transportation, Rome, Italy. [In Italian]
  54. NZSEE (2017), "The Seismic Assessment of Existing Buildings", Wellington, New Zealand.
  55. Ottonelli, D., Cattari, S. and Lagomarsino, S. (2020), "Displacement-Based Simplified Seismic Loss Assessment of Masonry Buildings", J. Earthq. Eng., 24(sup1), 23-59. https://doi.org/10.1080/13632469.2020.1755747
  56. Ponzo, F.C., Di Cesare, A., Nigro, D., Vulcano, A., Mazza, F., Dolce, M. and Moroni, C. (2012), "JETPACS project: dynamic experimental tests and numerical results obtained for a steel frame equipped with hysteretic damped chevron braces", J. Earthq. Eng., 16(5), 662-685. https://doi.org/10.1080/13632469.2012.657335
  57. Reynders, E., Teughels, A. and De Roeck, G. (2010), "Finite element model updating and structural damage identification using OMAX data", Mech. Syst. Signal Process., 24(5), 1306-1323. https://doi.org/10.1016/j.ymssp.2010.03.014
  58. Rizzi, E., Giongo, I., Ingham, J.M. and Dizhur, D. (2020), "Testing and Modeling In-Plane Behavior of Retrofitted Timber Diaphragms", J. Struct. Eng., 146(2), 04019191. https://doi.org/10.1061/(ASCE)ST.1943541X.0002473
  59. Rossi, M., Calderini, C. and Lagomarsino, S. (2016), "Experimental testing of the seismic in-plane displacement capacity of masonry cross vaults through a scale model", Bull. Earthq. Eng., 14(1), 261-281. https://doi.org/10.1007/s10518-015-9815-1
  60. Rossi, M., Barentin, C.C., Van Mele, T. and Block, P. (2017), "Experimental study on the behaviour of masonry pavilion vaults on spreading supports", In: Structures (Vol. 11, pp. 110120), Elsevier. https://doi.org/10.1016/j.istruc.2017.04.008
  61. Rosti, A., Rota, M. and Penna, A. (2020), "Empirical fragility curves for Italian URM buildings", Bull. Earthq. Eng. https://doi.org/10.1007/s10518-015-9815-1
  62. Sivori, D., Lepidi, M. and Cattari, S. (2020), "Ambient vibration tools to validate the rigid diaphragm assumption in the seismic assessment of buildings", Earthq. Eng. Struct. Dyn., 49(2), 194-211. https://doi.org/10.1002/eqe.3235
  63. Solarino, F., Oliveira, D.V. and Giresini, L. (2019), "Wall-tohorizontal diaphragm connections in historical buildings: A state-of-the-art review", Eng. Struct., 199, 109559. https://doi.org/10.1016/j.engstruct.2019.109559
  64. Spina, D., Acunzo, G., Fiorini, N., Mori, F. and Dolce, M. (2019), "A probabilistic simplified seismic model of masonry buildings based on ambient vibrations", Bull. Earthq. Eng., 17(2), 985-1007. https://doi.org/10.1007/s10518-018-0481-y
  65. Vanin, F., Zaganelli, D., Penna, A. and Beyer, K. (2017), "Estimates for the stiffness, strength and drift capacity of stone masonry walls based on 123 quasistatic cyclic tests reported in the literature", Bull. Earthq. Eng., 15(12), 5435-5479. https://doi.org/10.1007/s10518-017-0188-5
  66. Zarate, B.A. and Caicedo, J.M. (2008), "Finite element model updating: Multiple alternatives", Eng. Struct., 30(12), 3724-3730. https://doi.org/10.1016/j.engstruct.2008.06.012