DOI QR코드

DOI QR Code

Energy harvesting of sandwich beam with laminated composite core and piezoelectric face sheets under external fluid flow

  • Arani, Ali Ghorbanpour (Department of Solid Mechanics, Faculty of Mechanical Engineering, University of Kashan) ;
  • Farazin, Ashkan (Department of Solid Mechanics, Faculty of Mechanical Engineering, University of Kashan) ;
  • Mohammadimehr, Mehdi (Department of Solid Mechanics, Faculty of Mechanical Engineering, University of Kashan) ;
  • Lenjannejadian, Shahram (Department of Sport Biomechanics, Faculty of Sport Sciences, University of Isfahan)
  • Received : 2020.04.07
  • Accepted : 2020.12.19
  • Published : 2021.04.25

Abstract

In the present study, the generation of electrical energy from induced vibrations in a composite beam with piezoelectric layer are studied. Accordingly, using Euler-Bernoulli beam theory and considering two types of air damping (external damping) and structural damping (internal damping), the equations of motion for sandwich beam are obtained and then using the Kantorovich method, the output voltage relations for a composite beam with a piezoelectric layer are extracted. After validating the analytical results with the results in the literature, the effect of various parameters such as external fluid flow rate, fiber angle, and how the piezoelectric layer composite beams are arranged on energy harvesting. Also, the maximum oscillation amplitude are investigated. The results show that by using composite materials and with proper layer design and fiber angle in each layer, a different equivalent modulus of elasticity can be created in the composite beam, which will change the normal frequency of the system and the output voltage range of the circuit. The results show that the angle of the fibers has a significant effect on the damping coefficient of the structure, flexural stiffness, natural frequency and finally energy harvesting. According to the results, it can be seen that the minimum value of voltage per use of fibers with an angle of 50 degrees and the maximum amount of voltage per use of fibers with an angle of zero degrees are occurred.

Keywords

Acknowledgement

The authors would like to thank the referees for their valuable comments. Also, they are thankful to the Iranian Nanotechnology Development Committee for their financial support and the University of Kashan for supporting this work.

References

  1. AkhavanAlavi, S.M., Mohammadimehr, M. and Edjtahed, S.H. (2019), "Active control of micro Reddy beam integrated with functionally graded nanocomposite sensor and actuator based on linear quadratic regulator method", Eur. J. Mech.-A/Solids, 74, 449-461. https://doi.org/10.1016/j.euromechsol.2018.12.008
  2. Alsaadi, A., Shi, Y., Pan, L., Tao, J. and Jia, Y. (2019). "Vibration energy harvesting of multifunctional carbon fibre composite laminate structures", Compos. Sci. Technol., 178, 1-10. https://doi.org/10.1016/j.compscitech.2019.04.020
  3. An Tan, C., Amoozegar, S. and Lai, H.L. (2018), "Transfer function analysis of constrained, distributed piezoelectric vibration energy harvesting beam systems", J. Vib. Acoust., 140(3). https://doi.org/10.1115/1.4038949
  4. Babaeeian, M. and Mohammadimehr, M. (2020), "Investigation of the time elapsed effect on residual stress measurement in a composite plate by DIC method", Optics Lasers Eng., 128, 106002. https://doi.org/10.1016/j.optlaseng.2020.106002
  5. Blevins, R.D. (1977), Flow-induced vibration, New York, Van Nostrand Reinhold Co., 377 p.
  6. Blevins, R.D. and Vibrations, F.I. (1990), Van Nostrand Reinhold, New York, pp. 104-110.
  7. Cahill, P., Pakrashi, V. and Sun, P. (2018), "Energy harvesting techniques for health monitoring and indicators for control of a damaged pipe structure", Smart Struct. Syst., Int. J., 21(3), 287-303. https://doi.org/10.12989/sss.2018.21.3.287
  8. Ciappi, E., De Rosa, S., Franco, F., Guyader, J.L. and Hambric, S.A. (2015), Flinovia-Flow Induced Noise and Vibration Issues and Aspects, New York, Springer, pp. 67-115.
  9. Dai, H.L., Abdelkefi, A. and Wang, L. (2014), "Piezoelectric energy harvesting from concurrent vortex-induced vibrations and base excitations", Nonlinear Dyn., 77(3), 967-981. https://doi.org/10.1007/s11071-014-1355-8
  10. Erturk, A. and Inman, D.J. (2009), "An experimentally validated bimorph cantilever model for piezoelectric energy harvesting from base excitations", Smart Mater. Struct., 18(2), 025009. https://doi.org/10.1088/0964-1726/18/2/025009
  11. Erturk, A. and Inman, D.J. (2011), Piezoelectric Energy Harvesting, John Wiley & Sons, UK. https://doi.org/10.1002/9781119991151
  12. Facchinetti, M.L., De Langre, E. and Biolley, F. (2004), "Coupling of structure and wake oscillators in vortex-induced vibrations", J. Fluids Struct., 19(2), 123-140. https://doi.org/10.1016/j.jfluidstructs.2003.12.004
  13. Farazin, A. and Mohammadimehr, M. (2020), "Nano research for investigating the effect of SWCNTs dimensions on the properties of the simulated nanocomposites: a molecular dynamics simulation", Adv. Nano Res., Int. J., 9(2), 83-90. https://doi.org/10.12989/anr.2020.9.2.083
  14. Farazin, A., Aghdam, H.A., Motififard, M., Aghadavoudi, F., Kordjamshidi, A., Saber-Samandari, S. and Khandan, A. (2019), "A polycaprolactone bio-nanocomposite bone substitute fabricated for femoral fracture approaches: Molecular dynamic and micro-mechanical Investigation", J. Nanoanal., 6(3), 172-184. https://doi.org/10.22034/jna.2019.584848.1134
  15. Farazin, A., Aghadavoudi, F., Motififard, M., Saber-Samandari, S. and Khandan, A. (2020), "Nanostructure, molecular dynamics simulation and mechanical performance of PCL membranes reinforced with antibacterial nanoparticles", J. Appl. Computat. Mech., 7(2). https://doi.org/10.22055/JACM.2020.32902.2097
  16. Ghorbanpour Arani, A. and Zamani, M.H. (2018), "Nonlocal free vibration analysis of FG-porous shear and normal deformable sandwich nanoplate with piezoelectric face sheets resting on silica aerogel foundation", Arab. J. Sci. Eng., 43(9), 4675-4688. https://doi.org/10.1007/s13369-017-3035-8
  17. Ghorbanpour Arani, A., Mosayyebi, M., Kolahdouzan, F., Kolahchi, R. and Jamali, M. (2017), "Refined zigzag theory for vibration analysis of viscoelastic functionally graded carbon nanotube reinforced composite microplates integrated with piezoelectric layers", Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 231(13), 2464-2478. https://doi.org/10.1177/0954410016667150
  18. Ghorbanpour Arani, A., Rousta Navi, B., Mohammadimehr, M., Niknejad, S., Ghorbanpour Arani, A.A. and Hosseinpour, A. (2019), "Pull-in instability of MSGT piezoelectric polymeric FG-SWCNTs reinforced nanocomposite considering surface stress effect", J. Solid Mech., 11(4), 759-777. https://doi.org/10.22034/JSM.2019.668611
  19. Hannan, M.A., Hassan, K. and Jern, K.P. (2018), "A review on sensors and systems in structural health monitoring: Current issues and challenges", Smart Struct. Syst., Int. J., 22(5), 509-525. https://doi.org/10.12989/sss.2018.22.5.509
  20. Hartlen, R.T. and Currie, I.G. (1970), "Lift-oscillator model of vortex-induced vibration", J. Eng. Mech. Div., 96(5), 577-591. https://doi.org/10.1061/JMCEA3.0001276
  21. Kathiresan, M., Manisekar, K. and Manikandan, V. (2012), "Performance analysis of fiber metal laminated thin conical frusta under axial compression", Compos. Struct., 94(12), 3510-3519. https://doi.org/10.1016/j.compstruct.2012.05.026
  22. Keber, M. and Wiercigroch, M. (2008), "Dynamics of a vertical riser with weak structural nonlinearity excited by wakes", J. Sound Vib., 315(3), 685-699. https://doi.org/10.1016/j.jsv.2008.03.023
  23. Kim, J., Swartz, A., Lynch, J.P., Lee, J.J. and Lee, C.G. (2010), "Rapid-to-deploy reconfigurable wireless structural monitoring systems using extended-range wireless sensors", Smart Struct. Syst., Int. J., 6(5-6), 505-524. https://doi.org/10.12989/sss.2010.6.5_6.505
  24. Kim, J.M., Han, M., Lim, H.J., Yang, S. and Sohn, H. (2016), "Operation of battery-less and wireless sensor using magnetic resonance based wireless power transfer through concrete", Smart Struct. Syst., Int. J., 17(4), 631-646. https://doi.org/10.12989/sss.2016.17.4.631
  25. Khandan, A., Saber-Samandari, S., Telloo, M., Kazeroni, Z.S., Esmaeili, S., Sheikhbahaei, E. and Kamyab, B. (2020), "A mitral heart valve prototype using sustainable polyurethane polymer: fabricated by 3D bioprinter, tested by molecular dynamics simulation", AUT J. Mech. Eng. https://doi.org/10.22060/AJME.2020.17450.5862
  26. Li, W., Liu, T.S. and Hsiao, C.C. (2011), "A miniature generator using piezoelectric bender with elastic base", Mechatronics, 21(7), 1183-1189. https://doi.org/10.1016/j.mechatronics.2011.07.004
  27. Li, H., Liu, D., Wang, J., Shang, X. and Hajj, M.R. (2020), "Broadband bimorph piezoelectric energy harvesting by exploiting bending-torsion of L-shaped structure", Energy Convers. Manage., 206, 112503. https://doi.org/10.1016/j.enconman.2020.112503
  28. Mohammadimehr, M., Mohammadimehr, M.A. and Dashti, P. (2016), "Size-dependent effect on biaxial and shear nonlinear buckling analysis of nonlocal isotropic and orthotropic micro-plate based on surface stress and modified couple stress theories using differential quadrature methods", Appl. Mathe. Mech., 37(4), 529-554. https://doi.org/10.1007/s10483-016-2045-9
  29. Mohammadimehr, M., Navi, B.R. and Ghorbanpour Arani, A. (2017), "Dynamic stability of modified strain gradient theory sinusoidal viscoelastic piezoelectric polymeric functionally graded single-walled carbon nanotubes reinforced nanocomposite plate considering surface stress and agglomeration effects under hydro-thermo-electro-magneto-mechanical loadings", Mech. Adv. Mater. Struct., 24(16), 1325-1342. https://doi.org/10.1080/15376494.2016.1227507
  30. Mohammadimehr, M., Mohammadi-Dehabadi, A.A., AkhavanAlavi, S.M., Alambeigi, K., Bamdad, M., Yazdani, R. and Hanifehlou, S. (2018), "Bending, buckling, and free vibration analyses of carbon nanotube reinforced composite beams and experimental tensile test to obtain the mechanical properties of nanocomposite", Steel Compos. Struct., Int. J., 29(3), 405-422. https://doi.org/10.12989/scs.2018.29.3.405
  31. Ottman, G.K., Hofmann, H.F., Bhatt, A.C. and Lesieutre, G.A. (2002), "Adaptive piezoelectric energy harvesting circuit for wireless remote power supply", IEEE Transact. Power Electron., 17(5), 669-676. https://doi.org/10.1109/TPEL.2002.802194
  32. Rajabi, J. and Mohammadimehr, M. (2019), "Bending analysis of a micro sandwich skew plate using extended Kantorovich method based on Eshelby-Mori-Tanaka approach", Comput. Concrete, Int. J., 23(5), 361-376. https://doi.org/10.12989/cac.2019.23.5.361
  33. Rao, S.S. (2007), Vibration of Continuous Systems, New York: Wiley, Vol. 464.
  34. Setoodeh, A.R. and Azizi, A. (2015), "Bending and free vibration analyses of rectangular laminated composite plates resting on elastic foundation using a refined shear deformation theory", Iran. J. Mater. Form., 2(2), 1-13. https://doi.org/10.22099/IJMF.2015.3236
  35. Shan, X., Li, H., Yang, Y., Feng, J., Wang, Y. and Xie, T. (2019), "Enhancing the performance of an underwater piezoelectric energy harvester based on flow-induced vibration", Energy, 172, 134-140. https://doi.org/10.1016/j.energy.2019.01.120
  36. Soleymani, T. and Ghorbanpour Arani, A. (2019), "On aeroelastic stability of a piezo-MRE sandwich plate in supersonic airflow", Compos. Struct., 230, 111532. https://doi.org/10.1016/j.compstruct.2019.111532
  37. Trentadue, F., Quaranta, G., Maruccio, C. and Marano, G.C. (2019), "Energy harvesting from piezoelectric strips attached to systems under random vibrations", Smart Struct. Syst., Int. J., 24(3), 333-343. https://doi.org/10.12989/sss.2019.24.3.333
  38. Umeda, M., Nakamura, K. and Ueha, S. (1996), "Analysis of the transformation of mechanical impact energy to electric energy using piezoelectric vibrator", Japanese J. Appl. Phys., 35(5S), 3267. https://doi.org/10.1143/JJAP.35.3267
  39. Xie, J., Yang, J., Hu, H., Hu, Y. and Chen, X. (2012), "A piezoelectric energy harvester based on flow-induced flexural vibration of a circular cylinder", J. Intell. Mater. Syst. Struct., 23(2), 135-139. https://doi.org/10.1177/1045389X11431744
  40. Yamamoto, C.T., Meneghini, J.R., Saltara, F., Fregonesi, R.D.A. and Ferrari Jr, J.A. (2004), "Numerical simulations of vortex-induced vibration on flexible cylinders", J. Fluids Struct., 19(4), 467-489. https://doi.org/10.1016/j.jfluidstructs.2004.01.004
  41. Zarepour, G.R. (2017), "Vortex Induced Vibration of Simply Supported Visco elastic Beam", Modares Mech. Eng., 17(9), 309-318.
  42. Zhou, S., Hobeck, J.D., Cao, J. and Inman, D.J. (2017), "Analytical and experimental investigation of flexible longitudinal zigzag structures for enhanced multi-directional energy harvesting", Smart Mater. Struct., 26(3), 035008. https://doi.org/10.1088/1361-665X/26/3/035008.