References
- Adnane, A., Foitih, Z.A., Mohammed, M.A.S. and Bellar, A. (2018), "Real-time sensor fault detection and isolation for LEO satellite attitude estimation through magnetometer data", Adv. Sp. Res., 61(4), 1143-1157. https://doi.org/10.1016/j.asr.2017.12.007.
- Bellar, A. and Mohammed, M.A.S. (2019), "Satellite inertia parameters estimation based on extended Kalman Filter", J. Aerosp. Technol. Manage., 11, 1-11. https://doi.org/10.5028/jatm.v11.1016.
- Bergmann, E. and Dzielski, J. (1990), "Spacecraft mass property identification with torque-generating control", J. Guid. Control Dynam., 13(1), 99-103. https://doi.org/10.2514/3.20522.
- Bergmann, E.V., Walker, B.K. and Levy, D.R. (1987), "Mass property estimation for control of asymmetrical satellites", J. Guid. Control Dynam., 10(5), 483-491. https://doi.org/10.2514/3.20243.
- Bordany, R., Steyn, W.H. and Crawford, M. (2000), "In-orbit estimation of the inertia matrix and thruster parameters of UoSAT-12", Proceedings of the 14th AIAA/USU Conference on Small Satellites, Logan, U.S.A., August.
- Chashmi, S.Y.N. and Malaek, S.M.B. (2016), "Fast estimation of space-robots inertia parameters: A modular mathematical formulation", Acta Astronautica, 127, 283-295. https://doi.org/10.1016/j.actaastro.2016.04.037.
- Keim, J.A., Acikmese, A.B. and Shields, J.F. (2006), "Spacecraft inertia estimation via constrained least squares", Proceedings of the IEEE Aerospace Conference, Big Sky, Montana, U.S.A., March.
- Kim, D., Yang, S. and Lee, S. (2016), "Rigid body inertia estimation using extended Kalman and SavitzkyGolay filters", Math. Probl. Eng., 1-7. https://doi.org/10.1155/2016/2962671.
- Kim, D.H., Yang, S., Cheon, D.I., Lee, S. and Oh, H.S. (2010), "Combined estimation method for inertia properties of STSAT-3", J. Mech. Sci. Technol., 24(8), 1737-1741. https://doi.org/10.1007/s12206-010-0521-2.
- Kutlu, A., Haciyev, C. and Tekinalp, O. (2007), "Attitude determination and rotational motion parameters identification of a LEO satellite through magnetometer and sun sensor data", Proceedings of the 3rd International Conference on Recent Advances in Space Technologies, Istanbul, Turkey, June.
- Linares, R., Leve, F.A., Jan, M.K. and Crassidis, J.L. (2012), "Space object mass-specific inertia matrix estimation from photometric data", Adv. Astronaut. Sci., 144, 41-54.
- Lorenzetti, J S., Banuelos, L., Clarke, R., Murillo, O.J. and Bowers, A. (2017), "Determining products of inertia for small scale UAVs", Proceedings of the 55th AIAA Aerospace Sciences Meeting, Grapevine, Texas, U.S.A., January.
- Manchester, Z. R. and Peck, M. A. (2017), "Recursive inertia estimation with semidefinite programming", Proceedings of the AIAA Guidance, Navigation, and Control Conference, Grapevine, Texas, U.S.A., January.
- Muliadi, J., Langit, R. and Kusumoputro, B. (2017), "Estimating the UAV moments of inertia directly from its flight data", Proceedings of the 15th International Conference on Quality in Research (QiR): International Symposium on Electrical and Computer Engineering, Nusa Dua, Indonesia, July.
- Ni, Z., Wu, Z., Liu, J. and Shen, X. (2017), "On-orbit identification of time-varying moment of inertia for spacecraft based on a recursive subspace method", Proceedings of the 36th Chinese Control Conference (CCC), Dalian, China, July.
- Palimaka, J. and Burlton, B. (1992), "Estimation of spacecraft mass properties using angular rate gyro data", Proceedings of the Guidance, Navigation and Control Conference, Hilton Head Island, South Carolina, U.S.A., August.
- Salem, F.A. and Aly, A.A. (2015), "PD controller structures: Comparison and selection for an electromechanical system", Int. J. Intell. Syst. Appl., 7(2), 1-12. https://doi.org/10.5815/ijisa.2015.02.01.
- Sidi, M.J. (1997), Spacecraft Dynamics and Control: A Practical Engineering Approach, Cambridge University Press, Cambridge, U.K.
- Tanygin, S. and Williams, T. (1997), "Mass property estimation using coasting maneuvers", J. Guid. Control Dynam., 20(4), 625-632. https://doi.org/10.2514/2.4099.
- Thienel, J., Luquette, R. and Sanner, R. (2008), "Estimation of spacecraft inertia parameters", Proceedings of the AIAA Guidance, Navigation and Control Conference and Exhibit, Honolulu, Hawaii, U.S.A., August.
- Wertz, J. R. (2012), Spacecraft Attitude Determination and Control, Springer Science and Business Media, Berlin, Germany.
- Wie, B., Weiss, H. and Arapostathis, A. (1989), "Quarternion feedback regulator for spacecraft eigenaxis rotations", J. Guid. Control Dynam., 12(3), 375-380. https://doi.org/10.2514/3.20418.
- Xu, B. and Wang, S. (2017), "Vision-based moment of inertia estimation of non-cooperative space object", Proceedings of the 10th International Symposium on Computational Intelligence and Design (ISCID), Hangzhou, China, December.
- Yadegari, H., Khouane, B., Yukai, Z. and Chao, H. (2018), "Disturbance observer based anti-disturbance fault tolerant control for flexible satellites", Adv. Aircraft Spacecraft Sci., 5(4), 459-475. https://doi.org/10.12989/aas.2018.5.4.459.
- Yang, S., Lee, S., Lee, J.H. and Oh, H.S. (2015), "New real-time estimation method for inertia properties of STSAT-3 using gyro data", T. Japan Soc. Aeronaut. Sp. Sci., 58(4), 247-249. https://doi.org/10.2322/tjsass.58.247.
- Yang, Y. and Zhou, Z. (2017), "Attitude estimation: with or without spacecraft dynamics?", Adv. Aircraft Spacecraft Sci., 4(3), 335-351. https://doi.org/10.12989/aas.2017.4.3.335.
- Yoon, H., Riesing, K.M. and Cahoy, K. (2017), "Kalman filtering for attitude and parameter estimation of nanosatellites without gyroscopes", J. Guid. Control Dynam., 40(9), 2272-2288. https://doi.org/10.2514/1.G002649.
- Zhai, K., Wang, T. and Meng, D. (2017), "Optimal excitation design for identifying inertia parameters of spacecraft". Acta Astronautica, 140, 370-379. https://doi.org/10.1016/j.actaastro.2017.08.002.
- Zhao, Y., Zhang, D., Tian, H. and Li, N. (2009), "Mass property estimation for mated flight control", Proceedings of the International Conference on Computer Modeling and Simulation, Macau, China, February.