References
- ABAQUS, (2003), Analysis user's manual-version 6.4, 19.2.2. Hbbit, Karlsson & Sorensen, Inc.
- Akbari, H.A. and Mofid, M. (2015), "On the experimental and numerical study of braced steel shear panels", Struct. Des. Tall. Spec., 24(14), 853-872. https://doi.org/10.1002/tal.1215
- Aoki, T., Liu, Y., Takaku, T., Uenoya, M. and Fukumoto, Y. (2007), "Experimental investigation of tapered shear-type seismic devices for bridge bearings", In: Pacific Structural Steel Conference, Steel Structures in Natural Hazards, Wairakei, New Zealand.
- Bilondi, M.R.S., Yazdani, H. and Khatibinia, M. (2018), "Seismic energy dissipation-based optimum design of tuned mass dampers", Struct. Multidiscipl. Optimi., 58(6), 2517-2531. https://doi.org/10.1007/s00158-018-2033-0
- Boggs, P.T. and Tolle, J.W. (1995), "Sequential quadratic programming", Acta. Numeric., 4, 1-52. https://doi.org/10.1017/S0962492900002518
- Brando, G. and De Matteis, G. (2014), "Design of low strength-high hardening metal multi-stiffened shear plates", Eng. Struct., 60, 2-10. https://doi.org/10.1016/j.engstruct.2013.12.005
- Chan, R.W., Albermani, F. and Kitipornchai, S. (2013), "Experimental study of perforated yielding shear panel device for passive energy dissipation", J. Constr. Steel Res., 91, 14-25. https://doi.org/10.1016/j.jcsr.2013.08.013
- Choi, I.R. and Park, H.G. (2010), "Hysteresis model of thin infill plate for cyclic nonlinear analysis of steel plate shear walls", J. Struct. Eng., 136(11), 1423-1434. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000244
- De Matteis, G., Mazzolani, F. and Panico, S. (2008), "Experimental tests on pure aluminium shear panels with welded stiffeners", Eng. Struct., 30(6), 1734-1744. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000244
- De Matteis, G., Sarracco, G. and Brando, G. (2009), "Bracing type pure aluminium stiffened shear panels: an experimental study", Adv. Steel. Constr., 5(2), 106-119.
- De Matteis, G., Brando, G. and Mazzolani, F.M. (2011), "Hysteretic behaviour of bracing-type pure aluminium shear panels by experimental tests", Earthq. Eng. Struct. Dyn., 40(10), 1143-1162. https://doi.org/10.1002/eqe.1079
- De Matteis, G., Sarracco, G. and Brando, G. (2016), "Experimental tests and optimization rules for steel perforated shear panels", J. Constr. Steel Res., 123, 41-52. https://doi.org/10.1016/j.jcsr.2016.04.025
- Deng, K., Pan, P., Sun, J., Liu, J. and Xue, Y. (2014), "Shape optimization design of steel shear panel dampers", J. Constr. Steel Res., 99, 187-193. https://doi.org/10.1016/j.jcsr.2014.03.001
- Egorova, N., Eatherton, M.R. and Maurya, A. (2014), "Experimental study of ring-shaped steel plate shear walls", J. Constr. Steel Res., 103, 179-189. https://doi.org/10.1016/j.jcsr.2014.09.002
- Ene, D., Kishiki, S., Yamada, S., Jiao, Y., Konishi, Y., Terashima, M. and Kawamura, N. (2016), "Experimental study on the bidirectional inelastic deformation capacity of U-shaped steel dampers for seismic isolated buildings", Earthq. Eng. Struct. Dyn., 45(2), 173-192. https://doi.org/10.1002/eqe.2621
- Faux, I.D. and Pratt, M.J. (1979), Computational Geometry for Design and Manufacture, Ellis Horwood Ltd.
- Gharehbaghi, S. (2018), "Damage controlled optimum seismic design of reinforced concrete framed structures", Struct. Eng. Mech., Int. J,, 65(1), 53-68. https://doi.org/10.12989/sem.2018.65.1.053
- Gharehbaghi, S. and Khatibinia, M. (2015), "Optimal seismic design of reinforced concrete structures under time-history earthquake loads using an intelligent hybrid algorithm", Earthq. Eng. Eng. Vibr., 14(1), 97-109. https://doi.org/10.1007/s11803-015-0009-2
- Gharehbaghi, S., Yazdani, H. and Khatibinia, M. (2019), "Estimating inelastic seismic response of reinforced concrete frame structures using a wavelet support vector machine and an artificial neural network", Neural. Comput. Appl., 32, 2975-2988. https://doi.org/10.1007/s00521-019-04075-2
- Hamed, A.A. and Mofid, M. (2015), "On the equivalent simple models of braced steel shear panels", Proceedings of the Institution of Civil Engineers-Structures and Buildings, 168(8), 570-577. https://doi.org/10.1680/stbu.14.00070
- Hossain, M.R., Ashraf, M. and Albermani, F. (2011), "Numerical modelling of yielding shear panel device for passive energy dissipation", Thin-Wall. Struct., 49(8), 1032-1044. https://doi.org/10.1016/j.tws.2011.03.003
- Jain, S., Rai, D.C. and Sahoo, D.R. (2008), "Postyield cyclic buckling criteria for aluminum shear panels", J. Appl. Mech., 75(2), 021015. https://doi.org/10.1115/1.2793135
- Jiao, Y., Kishiki, S., Yamada, S., Ene, D., Konishi, Y., Hoashi, Y. and Terashima, M. (2015), "Low cyclic fatigue and hysteretic behavior of U-shaped steel dampers for seismically isolated buildings under dynamic cyclic loadings", Earthq. Eng. Struct. Dyn., 44(10), 1523-1538. https://doi.org/10.1002/eqe.2533
- Jirasek, M. and Bazant, Z.P. (2001), Inelastic Analysis of Structures, John Wiley & Sons.
- Kang, T.H.K., Martin, R.D., Park, H.G., Wilkerson, R. and Youssef, N. (2013), "Tall building with steel plate shear walls subject to load reversal", Struct. Des. Tall. Spec., 22(6), 500-520. https://doi.org/10.1002/tal.700
- Khatibinia, M., Fadaee, M.J., Salajegheh, J. and Salajegheh, E. (2013), "Seismic reliability assessment of RC structures including soil-structure interaction using wavelet weighted least squares support vector machine", Reliab. Eng. Syst. Saf., 110, 22-33. https://doi.org/10.1016/j.ress.2012.09.006
- Khatibinia, M., Gharehbaghi, S. and Moustafa, A. (2015), "Seismic reliability-based design optimization of reinforced concrete structures including soil-structure interaction effects", In: Earthquake Engineering-From Engineering Seismology to Optimal Seismic Design of Engineering Structures, A. Moustafa, Editor., InTech: London, UK. pp. 267-304.
- Khatibinia, M., Jalalipour, M. and Gharehbaghi, S. (2019), "Shape optimization of U-shaped steel dampers subjected to cyclic loading using an efficient hybrid approach", Eng. Struct., 197, 108874. https://doi.org/10.1016/j.engstruct.2019.02.005
- Kishiki, S., Ohkawara, Y., Yamada, S. and Wada, A. (2008), "Experimental evaluation of cyclic deformation capacity of U-shaped steel dampers for base-isolated structures", J. Struct. Constr. Eng., 73(624), 333-340. https://doi.org/10.3130/aijs.73.333
- Lemaitre, J. and Chaboche, J.L. (1994), Mechanics of Solid Materials, Cambridge University Press.
- Liu, Y. and Shimoda, M. (2013), "Shape optimization of shear panel damper for improving the deformation ability under cyclic loading", Struct. Multidiscipl. Optimi., 48(2), 427-435. https://doi.org/10.1007/s00158-013-0909-6
- Liu, Y., Aoki, T., Takaku, T. and Fukumoto, Y. (2007), "Cyclic loading tests of shear panel damper made of low yield steel", J. Struct. Constr. Eng. A, 53, 560-567.
- Mahmoudi, M. and Abdi, M.G. (2012), "Evaluating response modification factors of TADAS frames", J. Constr. Steel Res., 71, 162-170. https://doi.org/10.1016/j.jcsr.2011.10.015
- MATLAB (2018), The Language of Technical Computing, Vol. MathWorks, Inc. 2018: MathWorks, Incorporated.
- McKay, M.D., Beckman, R.J. and Conover, W.J. (1979), "A comparison of three methods for selecting values of input variables in the analysis of output from a computer code", Technometrics, 21(2), 239-245. https://doi.org/10.1080/00401706.1979.10489755
- Mirjalili, S. and Lewis, A. (2016), "The whale optimization algorithm", Adv. Eng. Softw., 95, 51-67. https://doi.org/10.1016/j.advengsoft.2016.01.008
- Nakashima, M., Iwai, S., Iwata, M., Takeuchi, T., Konomi, Sh., Akazawa, T. and Saburi, K. (1994), "Energy dissipation behaviour of shear panels made of low yield steel", Earthq. Eng. Struct. Dyn., 23(12), 1299-1313. https://doi.org/10.1002/eqe.4290231203
- Ohsaki, M. and Nakajima, T. (2012), "Optimization of link member of eccentrically braced frames for maximum energy dissipation", J. Constr. Steel Res., 75, 38-44. https://doi.org/10.1016/j.jcsr.2012.03.008
- Olhoff, N. (1995), Structural and Multidisciplinary Optimization: Proceedings of the First World Congress of Structural and Multidisciplinary Optimization, Goslar, Germany, May-June, Pergamon Press.
- Rai, D.C., Annam, P.K. and Pradhan, T. (2013), "Seismic testing of steel braced frames with aluminum shear yielding dampers", Eng. Struct., 46, 737-747. https://doi.org/10.1016/j.engstruct.2012.08.027
- Saeedi, F., Shabakhty, N. and Mousavi, S.R. (2016), "Seismic assessment of steel frames with triangular-plate added damping and stiffness devices", J. Const. Steel Res., 125, 15-25. https://doi.org/10.1016/j.jcsr.2016.06.011
- Sahoo, D.R. and Rai, D.C. (2013), "Design and evaluation of seismic strengthening techniques for reinforced concrete frames with soft ground story", Eng. Struct., 56, 1933-1944. https://doi.org/10.1016/j.engstruct.2013.08.018
- Sorace, S., Terenzi, G. and Mori, C. (2016), "Passive energy dissipation-based retrofit strategies for R/C frame water towers", Eng. Struct., 106, 385-398. https://doi.org/10.1016/j.engstruct.2015.10.038
- Suykens, J.A., Brabanter, J.D., Lukas, L. and Vandewalle, J. (2002), "Weighted least squares support vector machines: robustness and sparse approximation", Neurocomputing, 48(1-4), 85-105. https://doi.org/10.1016/S0925-2312(01)00644-0
- Valizadeh, H., Sheidaii, M. and Showkati, H. (2012), "Experimental investigation on cyclic behavior of perforated steel plate shear walls", J. Constr. Steel Res., 70, 308-316. https://doi.org/10.1016/j.jcsr.2011.09.016
- Vian, D., Bruneau, M. and Purba, R. (2009), "Special perforated steel plate shear walls with reduced beam section anchor beams. II: Analysis and design recommendations", J. Struct. Eng., 135(3), 221-228. https://doi.org/10.1061/(ASCE)0733-9445(2009)135:3(221)
- Wong, K. (2008), "Seismic energy dissipation of inelastic structures with tuned mass dampers", J. Eng. Mech., 134(2), 163-172. https://doi.org/10.1061/(ASCE)0733-9399(2008)134:2(163)
- Xu, F.H., Xu, Z.D. and Zhang, X.C. (2017), "Study on the space frame structures incorporated with magnetorheological dampers", Smart. Struct. Syst., Int. J., 19(3), 279-288. https://doi.org/10.12989/sss.2017.19.3.279
- Yazdani, H., Khatibinia, M., Gharehbaghi, S. and Hatami, K. (2016), "Probabilistic performance-based optimum seismic design of RC structures considering soil-structure interaction effects", ASCE-ASME J. Risk Uncertain. Eng. Syst. A Civ. Eng. Syst., Part A: Civil Eng., 3(2), G4016004. https://doi.org/10.1061/AJRUA6.0000880
- Zhang, C., Zhang, Z. and Shi, J. (2012a), "Development of high deformation capacity low yield strength steel shear panel damper", J. Constr. Steel Res., 75, 116-130. https://doi.org/10.1016/j.jcsr.2012.03.014
- Zhang, C., Zhang, Z. and Zhang, Q. (2012b), "Static and dynamic cyclic performance of a low-yield-strength steel shear panel damper", J. Constr. Steel Res., 79, 195-203. https://doi.org/10.1016/j.jcsr.2012.07.030
- Zhang, C., Zhu, J., Wu, M., Yu, J. and Zao, J. (2016), "The lightweight design of a seismic low-yield-strength steel shear panel damper", Materials, 9(6), 424. https://doi.org/10.3390/ma9060424
Cited by
- Mechanical performance and damping effect of multi‐stage yield metal sleeve damper vol.29, pp.2, 2021, https://doi.org/10.1002/stc.2864