Acknowledgement
This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.
References
- Blakelock, J.H. (1991), Automatic Control of Aircraft and Missiles, John Wiley & Sons, Inc., New York, U.S.A.
- Boeing. (2019), "Statistical summary of commercial jet airplane accidents worldwide operations 1959-2018", Boeing Commercial Airplanes, Seattle, Washington, D.C., U.S.A.
- Boschetti, P., Cardenas, E., Amerio, A. and Arevalo, A. (2010), "Stability and performance of a light unmanned airplane in ground effect", Proceedings of the 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, Orlando, Florida, U.S.A., January.
- Boschetti, P.J., Cardenas, E.M., Gonzalez, P.J. and Merkl, A. (2020), "Nonlinear aerodynamic model for wings in dynamic ground effect", J. Aircraft, 57(6), 1234-1241. https://doi.org/10.2514/1.C035853.
- Boschetti, P.J., Quijada, G. and Cardenas, E.M. (2016), "Dynamic ground effect on the aerodynamic coefficients of a wing using a panel method", Proceedings of the AIAA Atmospheric Flight Mechanics Conference, Washington, D.C., U.S.A., January.
- Boschetti, P.J., Quijada, G.M. and Cardenas, E.M. (2017), "Dynamic ground effect on the aerodynamic coefficients using a panel method", J. Aircraft, 54(2), 838-844. https://doi.org/10.2514/1.C034098.
- Chen, Y.S. and Schweikhard, W.G. (1985), "Dynamic ground effects on a two-dimensional flat plate", J. Aircraft, 22(7), 638-640. https://doi.org/10.2514/3.45179.
- Dias, J.N. (2016), "Nonlinear lifting-line algorithm for unsteady and post-stall conditions", Proceedings of the 34th AIAA Applied Aerodynamics Conference, Washington, D.C., U.S.A., January.
- dos Santos, C.R., and Marques, F.D. (2018), "Lift prediction including stall, using vortex lattice method with Kirchhoff-based correction", J. Aircraft, 55(2), 887-891. https://doi.org/10.2514/1.C034451.
- Fischenberg, D. (1995), "Identification of an unsteady aerodynamic stall model from flight test data", Proceedings of the 20th Atmospheric Flight Mechanics Conference, Baltimore, Maryland, U.S.A., August.
- Hao, D., Zhang, L., Yu, J. and Mao, D. (2019), "Modeling of unsteady aerodynamic characteristics at high angles of attack", Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng., 233(6), 2291-2301. https://doi.org/10.1177/0954410018776527.
- Katz, J. and Plotkin, A. (2001), Low-Speed Aerodynamics, Cambridge University Press, New York City, U.S.A.
- Lee, T., Majeed, A., Siddiqui, B. and Tremblay-Dionne, V. (2018), "Impact of ground proximity on the aerodynamic properties of an unsteady airfoil", Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng., 232(10), 1814-1830. https://doi.org/10.1177/0954410017703416
- Leishman, J.G., and Beddoes, T.S. (1989), "A semi-empirical model for dynamic stall", J. Amer. Helicopter Soc., 34(3), 3-17. https://doi.org/10.4050/JAHS.34.3.3
- Merkl, A., Boschetti, P.J. and Cardenas, E.M. (2019), "Dependence of the flight-path on the aerodynamic characteristics of rectangular wings due to dynamic ground effect", Proceedings of the AIAA Scitech 2019 Forum, San Diego, California, U.S.A., January.
- Murua, J., Palacios, R. and Graham, J.M.R. (2012), "Applications of the unsteady vortex-lattice method in aircraft aeroelasticity and flight dynamics", Prog. Aerosp. Sci., 55, 46-72. https://doi.org/10.1016/j.paerosci.2012.06.001.
- National Transportation Safety Board. (2012), "Crash during experimental test flight Gulfstream Aerospace Corporation GVI (G650) N652GD Roswell, New Mexico, April 2, 2011," Washington, D.C., U.S.A.
- Nuhait, A.O. (1995), "Unsteady ground effects on aerodynamic coefficients of finite wings with camber", J. Aircraft, 32(1), 186-192. https://doi.org/10.2514/3.46699.
- Nuhait, A.O. and Mook, D.T. (1989), "Numerical simulation of wings in steady and unsteady ground effects", J. Aircraft, 26(12), 1081-1089. https://doi.org/10.2514/3.45884.
- Paez Castro, L.I. (2019), "Simulacion del perfil aerodinamico NACA 4415 en vuelo libre y en efecto suelo", Engineering Final Project, Universidad Simon Bolivar, Caracas, Venezuela.
- Quijada, G., and Boschetti, P.J. (2015), "Linear computational fluid dynamic analysis of dynamic ground effect of a wing in sink and flare maneuvers", Proceedings of the AIAA Atmospheric Flight Mechanics Conference, Kissimmee, Florida, U.S.A., January.
- Rumsey, C.L. and Slotnick, J.P. (2015), "Overview and summary of the second AIAA high-lift prediction workshop", J. Aircraft, 52(4), 1006-1025. https://doi.org/10.2514/1.C032864.
- Rumsey, C.L., Slotnick, J.P. and Sclafani, A.J. (2019), "Overview and summary of the third AIAA high lift prediction workshop", J. Aircraft, 56(2), 621-644. https://doi.org/10.2514/1.C034940.
- Rumsey, C.L., Slotnick, J.P., Long, M., Stuever, R.A. and Wayman, T.R. (2011), "Summary of the first AIAA CFD high-lift prediction workshop", J. Aircraft, 48(6), 2068-2079. https://doi.org/10.2514/1.C031447.
- Sarpkaya, T. (1989), "Computational methods with vortices-The 1988 Freeman scholar lecture", J. Fluid. Eng., 111(1), 5-52. https://doi.org/10.1115/1.3243601.
- Staufenbiel, R.W. and Schlichting, U.J. (1988), "Stability of airplanes in ground effect", J. Aircraft, 25(4), 289-294. https://doi.org/10.2514/3.45562.
- Syms, G.F. (2002), "Low-order method for predicting aerodynamic performance degradation due to ground icing", J. Aircraft, 39(1), 59-64. https://doi.org/10.2514/2.2895.
- Traub, L.W. (2015), "Experimental and analytic investigation of ground effect", J. Aircraft, 52(1), 235-243. https://doi.org/10.2514/1.C032676.