참고문헌
- Abdullah, A., Roslan, A.A. and Omar, Z. (2018), "Comparative study of turbulent incompressible flow past naca airfoils", ARPN J. Eng. Appl. Sci., 13(21), 8527-8530.
- Abid, R. (1993), "Evaluation of two-equation turbulence models for predicting transitional flows", Int. J. Eng. Sci., 31(6), 831-840. https://doi.org/10.1016/0020-7225(93)90096-D
- Ahmed, T., Amin, M.T. and Islam, S.M.R. (2013), "Computational Study of Flow around a NACA 0012 wing flapped at different flap angles with varying mach numbers", Global J. Res. Eng., 13(4), 5-15.
- Akhtar, M. N., Bakar, E. A., Aabid, A. and Khan, S.A. (2019), "Numerical simulations of a CD nozzle and the influence of the duct length", Int. J. Innov. Technol. Explor. Eng., 8(9S2), 622-630.
- Arif, M., Mohamed, R., Guven, U. and Yadav, R. (2019), "Flow separation control of NACA-2412 airfoil with bio-inspired nose", Aircr. Eng. Aerosp. Tec., 7, 1058-1066. https://doi.org/10.1108/AEAT-06-2018-0175
- Baldock, N. and Mokhtarzadeh-Dehghan, M.R. (2006), "A study of solar-powered, high-altitude unmanned aerial vehicles", Aircr. Eng. Aerosp. Tec., 78(3), 187-193. https://doi.org/10.1108/17488840610663648.
- Bayliss, A. and Turkel, E. (1982), "Far-field boundary conditions for compressible flows", J. Comput. Phys., 48(2), 182-199. https://doi.org/10.1016/0021-9991(82)90046-8.
- Bitencourt, L.O., Pogorzelski, G., Freitas, R.M. and Azevedo, J.L.F. (2011), "A CFD-based analysis of the 14-Bis aircraft aerodynamics and stability", J. Aerosp. Technol. Manage., 3(2), 137-146. https://doi.org/10.5028/jatm.2011.03021711
- Botti, L., Paliwal, N., Conti, P., Antiga, L. and Meng, H. (2018), "Modeling hemodynamics in intracranial aneurysms: Comparing the accuracy of CFD solvers based on finite element and finite volume schemes", Int. J. Numer. Meth. Biomed. Eng., 34(9), 1-13. https://doi.org/10.1002/cnm.3111.
- Carmichael, B.H. (2018), Low Reynolds Number Airfoil Survey, 3336.
- Catalano, P. and Tognaccini, R. (2010), "Turbulence modeling for low-Reynolds-number flows", AIAA J., 48(8), 1673-1685. https://doi.org/10.2514/1.J050067.
- Cerra, D.F. and Katz, J. (2008), "Design of a high-lift, thick airfoil for unmanned aerial vehicle applications", J. Aircraft, 45(5), 1789-1793. https://doi.org/10.2514/1.36924.
- Cook, W.A. and Oakes, W.R. (1982), "A survey of unstructured mesh generation technology", Comput. Mech. Eng., 67-72.
- Ebrahimi, A., Hajipour, M. and Ghamkhar, K. (2018), "Dual-position excitation technique in flow control over an airfoil at low speeds", Int. J. Numer. Meth. Heat Fluid Flow. https://doi.org/10.1108/HFF-05-2018-0195
- Eftekhari, S. and Al-obaidi, A.S M. (2019), "Investigation of a NACA 0012 finite wing aerodynamics at low Reynold's numbers and 0° to 90° angle of attack", J. Aerosp. Technol. Manage., 11, 1-11. https://doi.org/10.5028/jatm.v11.1023
- El Gharbi, N., Absi, R., Benzaoui, A. and Bennacer, R. (2011), "An improved near-wall treatment for turbulent channel flows", Int. J. Comput. Fluid Dyn., 25(1), 41-46. https://doi.org/10.1080/10618562.2011.554832
- Eleni, D.C., Athanasios, T.I. and Dionissios, M.P. (2012), "Evaluation of the turbulence models for the simulation of the flow over a National Advisory Committee for Aeronautics (NACA) 0012 Airfoil", J. Mech. Eng. Res., 4(3), 100-111. https://doi.org/10.5897/JMER11.074,
- Forster, K.J. and White, T.R. (2014), "Numerical investigation into vortex generators on heavily cambered wings", AIAA J., 52(5), 1059-1071. https://doi.org/10.2514/1.J052529.
- Gowda, A.S. (2019), "Comparison of aerodynamic performance of NACA 4412 and 2412 using computational approach", Int. J. Eng. Trends Technol., 67(4), 73-75. https://doi.org/10.14445/22315381/IJETT-V67I4P216
- Grabis, Michael M., and Ramesh K. Agarwal. (2019), "Computational fluid dynamics analysis of inverted multi-element airfoils in ground effect", Proceedings of the AIAA Scitech 2019 Forum, San Diego, California, U.S.A., January.
- He, W., Perez, J.M., Yu, P. and Li, L.K. (2019), "Non-modal stability analysis of low-Re separated flow around a NACA 4415 airfoil in ground effect", Aerosp. Sci. Technol., 92, 269-279. https://doi.org/10.1016/j.ast.2019.06.007.
- Heinrich, M. and Schwarze, R. (2016), "Density-based solver for all Mach number flows", Progress Comput. Fluid Dyn., 16(5), 271-280. https://doi.org/10.1504/PCFD.2016.078752
- Islam, M.T., Arefin, A.M.E., Masud, M. and Mourshed, M. (1980), "The effect of Reynolds number on the performance of a modified NACA 2412 airfoil", Proceedings of the International Conference on Mechanical Engineering.
- Ives, R., Keir, A.S., Bassey, E. and Hamad, F.A. (2018), "Investigation of the flow around an aircraft wing of Section NACA 2412 utilizing ANSYS fluent", Proceedings of the Aerospace Europe CEAS 2017 Conference, Bucharest, Romania, October.
- Jeong, W. and Seong, J. (2014), "Comparison of effects on technical variances of computational fluid dynamics (CFD) software based on finite element and finite volume methods", Int. J. Mech. Sci., 78, 19-26. https://doi.org/10.1016/j.ijmecsci.2013.10.017.
- Kandwal, S. and Singh, S. (2012), "Computational fluid dynamics study of fluid flow and aerodynamic forces on an airfoil", Int. J. Eng. Res. Technol., 1(7), 1-8. https://doi.org/10.15623/ijret.2012.0101001
- Khan, S.A., Aabid, A., Ghasi, F.A.M., Al-Robaian, A.A. and Alsagri, A S. (2019), "Analysis of area ratio in a CD nozzle with suddenly expanded duct using CFD method", CFD Lett., 11(5), 61-71.
- Kharati-koopaee, M. and Fallahzadeh-abarghooee, M. (2018), "Effect of corrugated skins on the aerodynamic performance of the cambered airfoils", Eng. Comput., 35(3), 1567-1582. https://doi.org/10.1108/EC-08-2017-0302.
- Kharulaman, L., Aabid, A., Ahmed, F., Mehaboobali, G. and Khan, S.A. (2019), "Research on flows for NACA 2412 airfoil using computational fluid dynamics method", Int. J. Eng. Adv. Technol., 9(1), 5450-5456. https://doi.org/10.35940/ijeat.A3085.109119.
- Lafountain, C., Cohen, K. and Abdallah, S. (2012), "Use of XFOIL in the design of camber-controlled morphing UAVs", Comput. Appl. Eng. Ed., 20, 673-680. https://doi.org/10.1002/cae.20437.
- Leary, J. (2010), "Mini-project report computational fluid dynamics analysis of a low-cost wind turbine", University of Sheffield, Sheffield, U.K.
- Lissaman, P.B.S. (1983), "Low-Reynolds-number-airfoils", Ann. Rev. Fluid Mech., 15, 223-239. https://doi.org/10.1146/annurev.fl.15.010183.001255.
- Liu, S. and Qin, N. (2014), "Modeling roughness effects for transitional low Reynolds number aerofoil flows", J. Aerosp. Eng., 229(2), 280-289. https://doi.org/10.1177/0954410014530875.
- Lomax, H., Pulliam, T.H. and Zingg, D.W. (2013), Fundamentals of Computational Fluid Dynamics, Springer Science& Business Media.
- Lopes, A.M.G. (2016), "A 2D software system for expedite analysis of CFD problems in complex geometries", Comput. Appl. Eng. Ed., 24(1), 27-38. https://doi.org/10.1002/cae.21668.
- Madhanraj, V.R. and Shah, D.A. (2019), "CFD analysis of NACA 2421 aerofoil at several angles of attack", J. Aeronaut. Aerosp. Eng., 8(1), 1-4.
- Manni, L., Nishino, T. and Delafin, P. (2016), "Numerical study of airfoil stall cells using a very wide computational domain", Comput. Fluids, 140, 260-269. https://doi.org/10.1016/j.compfluid.2016.09.023.
- Mamouri, A.R., Lakzian, E. and Khoshnevis, A. B. (2019), "Entropy analysis of pitching airfoil for offshore wind turbines in the dynamic stall condition", Ocean Eng., 187, 106229. https://doi.org/10.1016/j.oceaneng.2019.106229.
- Menon, K. and Mittal, R. (2020), "Aerodynamic characteristics of canonical airfoils at low Reynolds numbers", AIAA J., 58(2), 977-980. https://doi.org/10.2514/1.J058969.
- Mermer, E., Koker, A., Kurtulus, D. F., Yilmaz, E. and Uzay, T. (2015), "Design and performance of wing configurations for high altitude solar powered unmanned", Proceedings of the Ankara International Aerospace Conference, Ankara, Turkey, September.
- Merryisha, S. and Rajendran, P. (2019), CFD Validation of NACA 2412 Airfoil.
- Molina-Aiz, F.D., Fatnassi, H., Boulard, T., Roy, J.C. and Valera, D.L. (2010), "Comparison of finite element and finite volume methods for simulation of natural ventilation in greenhouses", Comput. Electron. Agricult., 72(2), 69-86. https://doi.org/10.1016/j.compag.2010.03.002.
- Morgado, J. (2016), "XFOIL vs. CFD performance predictions for high lift low Reynolds number airfoils", Aerosp. Sci. Technol., 52, 207-214. https://doi.org/10.1016/j.ast.2016.02.031
- Myers, S.H. and Walters, D.K. (2005), "A one-dimensional subgrid near wall treatment for turbulent flow CFD simulation", Proceedings of the International Mechanical Engineering Congress and Exposition, Orlando, Florida, U.S.A., November.
- Correa, P.C.P. and Barcelos, M.N.D. (2013), "Numerical simulation of airfoils applied to UAVs", Therm. Eng., 13(1), 9-12. https://doi.org/10.5380/reterm.v13i1.62058.
- Park, J., Seol, Y., Cordier, F. and Noh, J. (2010), "A smoke visualization model for capturing surface-like features", Comput. Graphics, 29(8), 2352-2362. https://doi.org/10.1111/j.1467-8659.2010.01719.x.
- Patel, K.S., Patel, S.B., Patel, U.B. and Ahuja, P.A.P. (2015), "CFD analysis of an aerofoil", Int. J. Eng. Res., 3(3), 154-158. https://doi.org/10.17950/ijer/v3s3/305.
- Petinrin, M.O. and Onoja, V.A. (2017), "Computational study of aerodynamic flow over NACA 4412 airfoil", British J. Appl. Sci. Technol., 21(3), 1-11. https://doi.org/10.9734/BJAST/2017/31893
- Petrova, R. (2012). Finite Volume Method - Powerful Means of Engineering Design, InTech, Rijeka, Croatia.
- Premkartikkumar, S.R., Ashok, V., Bhabhra, A.R. and Beladiya, A. (2018), "Design and analysis of a new airfoil for RC aircrafts and UAVs", Int. J. Mech. Eng. Technol., 9(4), 52-60.
- Reddy, K., Sri, B., Aneesh, P., Bhanu, K. and Natarajan, M. (2016), "Design analysis of solar-powered unmanned aerial vehicle", J. Aerosp. Technol. Manage., 8(4), 397-407. https://doi.org/10.5028/jatm.v8i4.666.
- Reza, M.M.S., Mahmood, S.A. and Iqbal, A. (2016), "Performance analysis and comparison of high lift airfoil for low-speed unmanned aerial vehicle", Proceedings of the International Conference on Mechanical, Industrial and Energy Engineering 2016, Bangladesh, December.
- Rizvi, Z.A. (2017), "A study to understand differential equations applied to aerodynamics using CFD technique", Int. J. Sci. Eng. Res., 8(2), 16-19.
- Sadrehaghighi, I. (2019). Mesh Generation in CFD.
- Sagat, C., Mane, P. and Gawali, B.S. (2012), "Experimental and CFD analysis of airfoil at low Reynolds number", Int. J. Mech. Eng. Robotics Res., 1(3), 277-283.
- Sagmo, K.F., Bartl, J. and Saetran, L. (2016), "Numerical simulations of the NREL S826 airfoil Numerical simulations of the NREL S826 airfoil", J. Phys. Conf. Ser., 1-9. https://doi.org/10.1088/1742-6596/753/8/082036.
- Sahu, R. and Patnaik, B.S.V. (2011), "CFD simulation of momentum injection control past a streamlined body", Int. J. Numer. Meth. Heat Fluid Flow, 21(8), 980-1001. https://doi.org/10.1108/09615531111177750.
- Salazar-Jimenes, G., Lopez-Aguilar, H.A., Gomez, J.A., Chazao-Zaharias, A., Duerte-Moller, A. and PerezHernandez, A. (2018), "Blended wing CFD analysis: Aerodynamic", Int. J. Math. Comput. Simul., 12, 33-43.
- Salim, M.S. and Cheah, S.C. (2009), "Wall y+ strategy for dealing with wall-bounded turbulent flows", Proceedings of the International MultiConference of Engineers and Computer Scientists, Hong Kong, March.
- Saraf, A.K., Singh, M.P. and Chouhan, T.E.J.S. (2017), "Aerodynamics analysis of NACA 0012 airfoil using CFD", Int. J. Mech. Prod. Eng., 5(12), 21-25.
- Sayed, M.A., Kandil, H.A. and Shaltot, A. (2012), "Aerodynamic analysis of different wind-turbine blade profiles using finite-volume method", Energ. Convers. Manage., 64, 541-550. https://doi.org/10.1016/j.enconman.2012.05.030.
- Seetharam, H.C., Rodgers, E.J. and Wentz Jr, W.H. (2019), "Experimental studies of flow separation of the NACA 2412 airfoil at low speeds", NASA-CR-197497, NASA Langley Research Center.
- Selig, M.S. and Guglielmo, J.J. (2008), "High-lift low Reynolds number airfoil design", J. Aircraft, 34(1), 72-79. https://doi.org/10.2514/2.2137.
- Shen, C., Sun, F. and Xia, X. (2014), "Implementation of density-based solver for all speeds in the framework of openFOAM", Comput. Phys. Commun., 185(10), 2730-2741. https://doi.org/10.1016/j.cpc.2014.06.009.
- Sher Afghan Khan, Aabid, A. and Baig, M.A.A. (2018), "Design and fabrication of unmanned arial vehicle for multi-mission tasks", Int. J. Mech. Prod. Eng. Res. Develop., 8(4), 475-484. https://doi.org/10.24247/ijmperdaug201849.
- Sidlof, P. (2016), "CFD simulation of flow-induced vibration of an elastically supported airfoil", Proceedings of the Experimental Fluid Mechanics 2015, Prague, Czech Republic, November.
- Sogukpinar, H. and Bozkurt, I. (2018), "Implementation of different turbulence models to find the proper model to estimate the aerodynamic properties of airfoils", AIP Conf. Proc., 1935, 020003. https://doi.org/10.1063/1.5025957.
- Tang, L., Introduction, I. and Algorithm, N. (2008), "Reynolds-averaged Navier-Stokes simulations of lowReynolds-number airfoil aerodynamics", J. Aircraft, 45(3), 848-856. https://doi.org/10.2514/1.21995.
- Velkova, C., Calderon, F. M., Branger, T. and Soulier, C. (2016), "The impact of different turbulence models at ansys fluent over the aerodynamic characteristics of ultra-light wing airfoil NACA 2412 airfoil", Days Mech., 1-5.
- Yang, H.Q. and Dudley, J. (2017), "High-order pressure-based solver for 1. aeroacoustic simulations highorder pressure-based Solver for aeroacoustics simulations", Proceedings of the 19th AIAA/CEAS Aeroacoustics Conference, Berlin, Germany, May.
- Zhang, C., Sanjose, M. and Moreau, S. (2018), "Improvement of the near wall treatment in large Eddy simulation for aeroacoustic applications", Proceedings of the 2018 AIAA/CEAS Aeroacoustics Conference, Atlanta, Georgia, U.S.A., June.
- Ziemer, S. and Stenz, G. (2012), "The case for open source software in aeronautics", Aircr. Eng. Aerosp. Tec., 84(3), 133-139. https://doi.org/10.1108/00022661211221987
- Zorkipli, M.K.H.M. and Razak, N.A. (2017), "Simulation of aeroelastic system with aerodynamic nonlinearity", Proceedings of the International Conference on Vibration, Sound and System Dynamics, Kuala Lumpur, Malaysia, August.