과제정보
The project was funded by Deanship of Scientific Research (DSR) at Jazan University, Jazan, Kingdom of Saudi Arabia under grant no. W41-045. The authors acknowledge with thanks DSR for technical and financial support.
참고문헌
- Abo-bakr, R.M., Abo-bakr, H.M., Mohamed, S.A. and Eltaher, M.A. (2020a), "Optimal Weight for Buckling of FG Beam under Variable Axial Load using Pareto Optimality", Compos. Struct., 113193. https://doi.org/10.1016/j.compstruct.2020.113193
- Abo-Bakr, H.M., Abo-Bakr, R.M., Mohamed, S.A. and Eltaher, M.A. (2020b), "Weight optimization of axially functionally graded microbeams under buckling and vibration behaviors", Mech. Based Des. Struct. Mach., 1-22. https://doi.org/10.1080/15397734.2020.1838298
- Akbas, S.D. (2013), "Geometrically nonlinear static analysis of edge cracked Timoshenko beams composed of functionally graded material", Mathe. Problems Eng., 2013. https://doi.org/10.1155/2013/871815
- Akbas, S.D. (2014), "Free vibration of axially functionally graded beams in thermal environment", Int. J. Eng. Appl. Sci., 6(3), 37-51. https://doi.org/10.24107/ijeas.251224
- Akbas, S.D. (2015a), "Wave propagation of a functionally graded beam in thermal environments", Steel Compos. Struct., Int. J., 19(6), 1421-1447. https://doi.org/10.12989/scs.2015.19.6.1421
- Akbas, S.D. (2015b), "Free vibration and bending of functionally graded beams resting on elastic foundation", Res. Eng. Struct. Mater., 1(1), 25-37. http://dx.doi.org/10.17515/resm2015.03st0107
- Akbas, S.D. (2017a), "Nonlinear static analysis of functionally graded porous beams under thermal effect", Coupl. Syst. Mech., Int. J., 6(4), 399-415. https://doi.org/10.12989/csm.2017.6.4.399
- Akbas, S.D. (2017b), "Stability of a non-homogenous porous plate by using generalized differantial quadrature method", Int. J. Eng. Appl. Sci., 9(2), 147-155. https://doi.org/10.24107/ijeas.322375
- Akbas, S.D. (2018a), "Nonlinear thermal displacements of laminated composite beams", Coupl. Syst. Mech., Int. J., 7(6), 691-705. https://doi.org/10.12989/csm.2018.7.6.691
- Akbas, S.D. (2018b), "Post-buckling responses of a laminated composite beam", Steel Compos. Struct., Int. J., 26(6), 733-743. https://doi.org/10.12989/scs.2018.26.6.733
- Akbas, S.D. (2018c), "Forced vibration analysis of functionally graded porous deep beams", Compos. Struct., 186, 293-302. https://doi.org/10.1016/j.compstruct.2017.12.013
- Akbas, S.D. (2018d), "Geometrically nonlinear analysis of functionally graded porous beams", Wind Struct., Int. J., 27(1), 59-70. https://doi.org/10.12989/was.2018.27.1.059
- Akbas, S.D. (2018e), "Thermal post-buckling analysis of a laminated composite beam", Struct. Eng. Mech., Int. J., 67(4), 337-346. http://dx.doi.org/10.12989/sem.2018.67.4.337
- Akbas, S.D. (2018f), "Geometrically nonlinear analysis of a laminated composite beam", Struct. Eng. Mech., Int. J., 66(1), 27-36. http://dx.doi.org/10.12989/sem.2018.66.1.027
- Akbas, S.D. (2018g), "Investigation on free and forced vibration of a bi-material composite beam", J. Polytech.-Politeknik Dergisi, 21(1), 65-73. http://dx.doi.org/10.2339/politeknik.386841
- Akbas, S.D. (2018h), "Investigation of static and vibration behaviors of a functionally graded orthotropic beam", Balikesir universitesi Fen Bilimleri Enstitusu Dergisi, 1-14. https://doi.org/10.25092/baunfbed.343227
- Akbas, S.D. (2019a), "Forced vibration analysis of functionally graded sandwich deep beams", Coupl. Syst. Mech., Int. J., 8(3), 259-271. http://dx.doi.org/10.12989/csm.2019.8.3.259
- Akbas, S.D. (2019b), "Hygro-thermal nonlinear analysis of a functionally graded beam", J. Appl. Computat. Mech., 5(2), 477-485. http://dx.doi.org/10.22055/JACM.2018.26819.1360
- Akbas, S.D. (2019c), "Hygrothermal post-buckling analysis of laminated composite beams", Int. J. Appl. Mech., 11(1), 1950009. https://doi.org/10.1142/S1758825119500091
- Akbas, S.D. (2019d), "Hygro-thermal post-buckling analysis of a functionally graded beam", Coupl. Syst. Mech., Int. J., 8(5), 459-471. http://dx.doi.org/10.12989/csm.2019.8.5.459
- Alshorbagy, A.E., Eltaher, M.A. and Mahmoud, F.F. (2011), "Free vibration characteristics of a functionally graded beam by finite element method", Appl. Mathe. Modell., 35(1), 412-425. https://doi.org/10.1016/j.apm.2010.07.006
- Asiri, S.A., Akbas, S.D. and Eltaher, M.A. (2020a), "Damped dynamic responses of a layered functionally graded thick beam under a pulse load", Struct. Eng. Mech., Int. J., 75(6), 713-722. https://doi.org/10.12989/sem.2020.75.6.713
- Asiri, S.A., Akbas, S.D. and Eltaher, M.A. (2020b), "Dynamic Analysis of Layered Functionally Graded Viscoelastic Deep Beams with Different Boundary Conditions due to a Pulse Load", Int. J. Appl. Mech., 12(5), 2050055. https://doi.org/10.1142/S1758825120500556
- Benahmed, A., Fahsi, B., Benzair, A., Zidour, M., Bourada, F. and Tounsi, A. (2019), "Critical buckling of functionally graded nanoscale beam with porosities using nonlocal higher-order shear deformation", Struct. Eng. Mech., Int. J., 69(4), 457-466. https://doi.org/10.12989/sem.2019.69.4.457
- Chen, X.L. and Liew, K.M. (2004), "Buckling of rectangular functionally graded material plates subjected to nonlinearly distributed in-plane edge loads", Smart Mater. Struct., 13(6), 1430. https://doi.org/10.1088/0964-1726/13/6/014
- Civalek, O. (2019), "Vibration of functionally graded carbon nanotube reinforced quadrilateral plates using geometric transformation discrete singular convolution method", Int. J. Numer Methods Eng., 11, 205-216. https://doi.org/10.1002/nme.6254
- Ebrahimi, F. and Jafari, A. (2016), "A higher-order thermomechanical vibration analysis of temperature-dependent FGM beams with porosities", J. Eng., 2016. http://dx.doi.org/10.1155/2016/9561504
- Eltaher, M.A. and Akbas, S.D. (2020), "Transient response of 2D functionally graded beam structure", Struct. Eng. Mech., Int. J., 75(3), 357-367. https://doi.org/10.12989/sem.2020.75.3.357
- Eltaher, M.A., Omar, F.A., Abdraboh, A.M., Abdalla, W.S. and Alshorbagy, A.E. (2020a), "Mechanical behaviors of piezoelectric nonlocal nanobeam with cutouts", Smart Struct. Syst., Int. J., 25(2), 219-228. https://doi.org/10.12989/sss.2020.25.2.219
- Eltaher, M.A. and Mohamed, N.A. (2020b), "Vibration of nonlocal perforated nanobeams with general boundary conditions", Smart Struct. Syst., Int. J., 25(4), 501-514. https://doi.org/10.12989/sss.2020.25.4.501
- Farokhi, H., Ghayesh, M.H. and Hussain, S. (2016), "Three-dimensional nonlinear global dynamics of axially moving viscoelastic beams", J. Vib. Acoust., 138(1). https://doi.org/10.1115/1.4031600
- Fazzolari, F.A. (2018), "Generalized exponential, polynomial and trigonometric theories for vibration and stability analysis of porous FG sandwich beams resting on elastic foundations", Compos. Part B: Eng., 136, 254-271. https://doi.org/10.1016/j.compositesb.2017.10.022
- Ghayesh, M.H. (2012), "Nonlinear dynamic response of a simply-supported Kelvin-Voigt viscoelastic beam, additionally supported by a nonlinear spring", Nonlinear Anal.: Real World Applic., 13(3), 1319-1333. https://doi.org/10.1016/j.nonrwa.2011.10.009
- Ghayesh, M.H. (2018a), "Nonlinear vibration analysis of axially functionally graded shear-deformable tapered beams", Appl. Mathe. Modell., 59, 583-596. https://doi.org/10.1016/j.apm.2018.02.017
- Ghayesh, M.H. (2018b), "Dynamics of functionally graded viscoelastic microbeams", Int. J. Eng. Sci., 124, 115-131. https://doi.org/10.1016/j.ijengsci.2017.11.004
- Ghayesh, M.H. (2019a), "Viscoelastic mechanics of Timoshenko functionally graded imperfect microbeams", Compos. Struct., 225, 110974. https://doi.org/10.1016/j.compstruct.2019.110974
- Ghayesh, M.H. (2019b), "Mechanics of viscoelastic functionally graded microcantilevers", Eur. J. Mech.-A/Solids, 73, 492-499. https://doi.org/10.1016/j.euromechsol.2018.09.001
- Ghayesh, M.H. (2019c), "Asymmetric viscoelastic nonlinear vibrations of imperfect AFG beams", Appl. Acoust., 154, 121-128. https://doi.org/10.1016/j.apacoust.2019.03.022
- Ghayesh, M.H. (2019d), "Dynamical analysis of multilayered cantilevers", Commun. Nonlinear Sci. Numer. Simul., 71, 244-253. https://doi.org/10.1016/j.cnsns.2018.08.012
- Ghayesh, M.H. (2019e), "Nonlinear oscillations of FG cantilevers", Appl. Acoust., 145, 393-398. https://doi.org/10.1016/j.apacoust.2018.08.014
- Ghayesh, M.H. (2019f), "Viscoelastic dynamics of axially FG microbeams", Int. J. Eng. Sci., 135, 75-85. https://doi.org/10.1016/j.ijengsci.2018.10.005
- Ghayesh, M.H. and Amabili, M. (2012), "Nonlinear dynamics of axially moving viscoelastic beams over the buckled state", Comput. Struct., 112, 406-421. https://doi.org/10.1016/j.compstruc.2012.09.005
- Ghayesh, M.H. and Moradian, N. (2011), "Nonlinear dynamic response of axially moving, stretched viscoelastic strings", Archive Appl. Mech., 81(6), 781-799. https://doi.org/10.1007/s00419-010-0446-3
- Ghayesh, M.H., Kazemirad, S. and Darabi, M.A. (2011), "A general solution procedure for vibrations of systems with cubic nonlinearities and nonlinear/time-dependent internal boundary conditions", J. Sound Vib., 330(22), 5382-5400. https://doi.org/10.1016/j.jsv.2011.06.001
- Jouneghani, F.Z., Dimitri, R. and Tornabene, F. (2018), "Structural response of porous FG nanobeams under hygro-thermoechanical loadings", Compos. Part B: Eng., 152, 71-78. https://doi.org/10.1016/j.compositesb.2018.06.023
- Pegios, I.P. and Hatzigeorgiou, G.D. (2018), "Finite element free and forced vibration analysis of gradient elastic beam structures", Acta Mechanica, 229(12), 4817-4830. https://doi.org/10.1007/s00707-018-2261-9
- Ramteke, P.M., Panda, S.K. and Sharma, N. (2019), "Effect of grading pattern and porosity on the eigen characteristics of porous functionally graded structure", Steel Compos. Struct., Int. J., 33(6), 865-875. http://dx.doi.org/10.12989/scs.2019.33.6.865
- Ramteke, P.M., Mahapatra, B.P., Panda, S.K. and Sharma, N. (2020), "Static deflection simulation study of 2D Functionally graded porous structure", Materials Today: Proceedings. https://doi.org/10.1016/j.matpr.2020.03.537
- Sheng, G.G. and Wang, X. (2019), "Nonlinear forced vibration of functionally graded Timoshenko microbeams with thermal effect and parametric excitation", Int. J. Mech. Sci., 155, 405-416. https://doi.org/10.1016/j.ijmecsci.2019.03.015
- Taati, E. and Fallah, F. (2019), "Exact solution for frequency response of sandwich microbeams with functionally graded cores", J. Vib. Control, 25(19-20), 2641-2655. https://doi.org/10.1177/1077546319864645
- Wattanasakulpong, N. and Ungbhakorn, V. (2014), "Linear and nonlinear vibration analysis of elastically restrained ends FGM beams with porosities", Aerosp. Sci. Technol., 32(1), 111-120. https://doi.org/10.1016/j.ast.2013.12.002
- Wu, D., Liu, A., Huang, Y., Huang, Y., Pi, Y. and Gao, W. (2018), "Dynamic analysis of functionally graded porous structures through finite element analysis", Eng. Struct., 165, 287-301. https://doi.org/10.1016/j.engstruct.2018.03.023
- Yang, J., Chen, D. and Kitipornchai, S. (2018), "Buckling and free vibration analyses of functionally graded graphene reinforced porous nanocomposite plates based on Chebyshev-Ritz method", Compos. Struct., 193, 281-294. https://doi.org/10.1016/j.compstruct.2018.03.090
- Zhao, J., Xie, F., Wang, A., Shuai, C., Tang, J. and Wang, Q. (2019), "Vibration behavior of the functionally graded porous (FGP) doubly-curved panels and shells of revolution by using a semi-analytical method", Compos. Part B: Eng., 157, 219-238. https://doi.org/10.1016/j.compositesb.2018.08.087