Acknowledgement
This work was supported by the Gachon University research fund of 2019 (GCU-2019-0806). This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2018R1D1A1B07048182).
References
- Alshibli, K.A., Abu-Farsakh, M. and Seyman, E. (2005), "Laboratory evaluation of the geogauge and light falling weight deflectometer as construction control tools", J. Mater. Civil Eng., 17(5), 560-569. https://doi.org/10.1061/(asce)0899-1561(2005)17:5(560)
- ASTM D6951 (2009), Standard Test Method for Use of the Dynamic Cone Penetrometer in Shallow Pavement Applications, Annual Book of ASTM Standard, 04.03, ASTM International, West Conshohocken, PA, USA. https://doi.org/10.1520/d6951_d6951m
- ASTM E2583 (2007), Standard Test Method for Measuring Deflections with a Light Weight Deflectometer, Annual Book of ASTM Standard, ASTM International, West Conshohocken, PA, USA. https://doi.org/10.1520/e2583-07
- Balachowski, L. (2007), "Size effect in centrifuge cone penetration tests", Arch. Hydro-Eng. Environ. Mech., 54(3), 161-181.
- Briaud, J.L. (2013), Geotechnical Engineering: Unsaturated and Saturated Soils, John Wiley & Sons. https://doi.org/10.1002/9781118686195
- Byun, Y.H. and Kim, D.J. (2020), "In-situ modulus detector for subgrade characterization", Int. J. Pavement. Eng. [Online published] https://doi.org/10.1080/10298436.2020.1743291
- Byun, Y.H. and Lee, J.S. (2013), "Instrumented dynamic cone penetrometer corrected with transferred energy into a cone tip: a laboratory study", Geotech. Test. J., 36(4), 533-542. https://doi.org/10.1520/GTJ20120115
- Chen, D.H., Lin, D.F., Liau, P.H. and Bilyeu, J. (2005), "A correlation between dynamic cone penetrometer values and pavement layer moduli", Geotech. Test. J., 28(1), 42-49. https://doi.org/10.1520/gtj12312
- Elhakim, A.F., Elbaz, K. and Amer, M.I. (2014), "The use of light weight deflectometer for in situ evaluation of sand degree of compaction", HBRC J., 10(3), 298-307. https://doi.org/10.1016/j.hbrcj.2013.12.003
- Farghaly, A.A. (2015), "Seismic analysis of 3-D two adjacent buildings connected by viscous dampers with effect of underneath different soil kinds", Smart Struct. Syst., Int. J., 15(5), 1293-1309. https://doi.org/10.12989/sss.2015.15.5.1293
- Fleming, P.R., Frost, M.W. and Lambert, J.P. (2007), "Review of lightweight deflectometer for routine in situ assessment of pavement material stiffness", Transport. Res. Rec., 2004(1), 80-87. https://doi.org/10.3141/2004-09
- Gabr, M.A., Hopkins, K., Coonse, J. and Hearne, T. (2000), "DCP criteria for performance evaluation of pavement layers", J. Perform. Constr. Facil., 14(4), 141-148. https://doi.org/10.1061/(asce)0887-3828(2000)14:4(141)
- George, V., Rao, N.C. and Shivashankar, R. (2009), "PFWD, DCP and CBR correlations for evaluation of lateritic subgrades", Int. J. Pavement Eng., 10(3), 189-199. https://doi.org/10.1080/10298430802342765
- Gidigasu, M.D. (1980), "Geotechnical evaluation of residual gravels in pavement construction", Eng. Geol., 15(3-4), 173-194. https://doi.org/10.1016/0013-7952(80)90033-2
- Harison, J.A. (1987), "Correlation between California bearing ratio and dynamic cone penetrometer strength measurement of soils", Proc. Inst. Civil Eng., 83(4), 833-844. https://doi.org/10.1680/iicep.1987.204
- Harison, J.A. (1989), "In situ CBR determination by DCP testing using a laboratory-based correlation", Aust. Road Res., 19(4), 313-317.
- Hong, W.T., Byun, Y.H., Kim, S.Y. and Lee, J.S. (2016), "Cone penetrometer incorporated with dynamic cone penetration method for investigation of track substructures", Smart Struct. Syst., Int. J., 18(2), 197-216. https://doi.org/10.12989/sss.2016.18.2.197
- Hong, W.T., Kim, S.Y., Lee, S.J. and Lee, J.S. (2017), "Strength and stiffness assessment of railway track substructures using crosshole-type dynamic cone penetrometer", Soil Dyn. Earthq. Eng., 100, 88-97. https://doi.org/10.1016/j.soildyn.2017.05.021
- Kim, S.Y. and Lee, J.S. (2020), "Energy correction of dynamic cone penetration index for reliable evaluation of shear strength in frozen sand-silt mixtures", Acta Geotech., 15(4), 947-961. https://doi.org/10.1007/s11440-019-00812-y
- Kleyn, E.G. (1975), "The Use of the Dynamic Cone Penetrometer (DCP)", Transvaal Provincial Administration, Report No. 2/74, South Africa.
- Kong, S.M., Kim, D.M., Lee, D.Y., Jung, H.S. and Lee, Y.J. (2018), "Field and laboratory assessment of ground subsidence induced by underground cavity under the sewer pipe", Geomech. Eng., Int. J., 16(3), 285-293. https://doi.org/10.12989/gae.2018.16.3.285
- Lee, J.S. and Byun, Y.H. (2020), "Instrumented Cone Penetrometer for Dense Layer Characterization", Sensors, 20(20), 5782. https://doi.org/10.3390/s20205782
- Lee, C., Kim, K.S., Woo, W. and Lee, W. (2014), "Soil stiffness gauge (SSG) and dynamic cone penetrometer (DCP) tests for estimating engineering properties of weathered sandy soils in Korea", Eng. Geol., 169, 91-99. https://doi.org/10.1016/j.enggeo.2013.11.010
- Lee, J.S., Kim, S.Y., Hong, W.T. and Byun, Y.H. (2019), "Assessing subgrade strength using an instrumented dynamic cone penetrometer", Soils Found., 59(4), 930-941. https://doi.org/10.1016/j.sandf.2019.03.005
- Livneh, M. (1989), "Validation of correlations between a number of penetration tests and in situ California bearing ratio tests", Transport. Res. Rec., 1219, 56-67.
- Livneh, M., Ishai, I. and Livneh, N.A. (1995), "Effect of vertical confinement on dynamic cone penetrometer strength values in pavement and subgrade evaluations", Transport. Res. Rec., 1473, 1-8.
- McElvaney, J. and Bundadidjatnika, I.R. (1991), "Strength evaluation of lime-stabilised pavement foundations using the dynamic cone penetrometer", Aust. Road Res., 21(1), 45-52.
- Mir, M., Bouafia, A., Rahmani, K., and Aouali, N. (2017), "Analysis of load-settlement behaviour of shallow foundations in saturated clays based on CPT and DPT tests", Geomech. Eng., Int. J., 13(1), 119-139. https://doi.org/10.12989/gae.2017.13.1.119
- Mohammadi, S.D., Nikoudel, M.R., Rahimi, H. and Khamehchiyan, M. (2008), "Application of the dynamic cone penetrometer (DCP) for determination of the engineering parameters of sandy soils", Eng. Geol., 101(3-4), 195-203. https://doi.org/10.1016/j.enggeo.2008.05.006
- Nazzal, M., Abu-Farsakh, M., Alshibli, K. and Mohammad, L. (2004), "Evaluating the potential use of a portable LFWD for characterizing pavement layers and subgrades", In: Geotechnical Engineering for Transportation Projects, Proceedings of GeoTrans 2004, Los Angeles, CA, USA, July, pp. 915-924. https://doi.org/10.1061/40744(154)79
- Putri, E.E., Kameswara, N.S.V.R. and Mannan, M.A. (2012), "Evaluation of modulus of elasticity and modulus of subgrade reaction of soils using CBR test", J. Civil Eng. Res., 2(1), 34-40. https://doi.org/10.5923/j.jce.20120201.05
- Roy, S. (2016), "Assessment of soaked California bearing ratio value using geotechnical properties of soils", Resour. Environ., 6(4), 80-87. https://doi.org/10.5923/j.re.20160604.03
- Sawangsuriya, A. and Edil, T.B. (2005), "Evaluating stiffness and strength of pavement materials", Proc. Inst. Civil Eng. Geotech. Eng., 158(4), 217-230. https://doi.org/10.1680/geng.2005.158.4.217
- Scala, A.J. (1956), "Simple methods of flexible pavement design using cone penetrometers", New Zeal. Eng., 11(2), 34-44.
- Schmertmann, J.H., Brown, P.R. and Hartman, J.P. (1978), "Improved strain influence factor diagrams", J. Geotech. Geoenviron. Eng., 104(8), 1131-1135. https://doi.org/10.1061/AJGEB6.0000683
- Sujatha, E.R., Geetha, A.R., Jananee, R. and Karunya, S.R. (2018), "Strength and mechanical behaviour of coir reinforced lime stabilized soil", Geomech. Eng., Int. J., 16(6), 627-634. https://doi.org/10.12989/gae.2018.16.6.627
- Usluogullari, O.F. and Vipulanandan, C. (2011), "Stress-strain behavior and California bearing ratio of artificially cemented sand", J. Test. Eval., 39(4), 637-645. https://doi.org/10.1520/jte103165
- Webster, S.L., Grau, R.H. and Williams, T.P. (1992), "Description and application of dual mass dynamic cone penetrometer", U.S. Army Corps of Engineers Waterways Experiment Station, Vicksburg. Instruction Report GL-92-3.