DOI QR코드

DOI QR Code

Subgrade assessment using automated dynamic cone penetrometer to manage geo-infrastructures

  • Kim, Sang Yeob (Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign) ;
  • Lee, Jong-Sub (School of Civil, Environmental and Architectural Engineering, Korea University) ;
  • Hong, Won-Taek (Department of Civil & Environmental Engineering, Gachon University)
  • 투고 : 2020.09.03
  • 심사 : 2020.03.24
  • 발행 : 2021.05.25

초록

For the efficient management of geo-infrastructures in the field, engineering properties of the subgrade should be reliably and rapidly investigated. The objective of this study is to estimate and compare the strength and stiffness parameters of subgrades using portable in-situ devices. An automated dynamic cone penetrometer (ACP), dynamic cone penetrometer (DCP), and light falling weight deflectometer (LFWD) are adopted and applied at nine points of soft ground in South Korea. The N-value from the ACP (NACP), which efficiently assesses the relatively deep subgrade, is correlated with the dynamic cone penetration index (DCPI) and dynamic deflection modulus (Evd). Test results show that the DCPI and Evd can be estimated in terms of NACP. In particular, the relationship between Evd and NACP is improved when the strain influence factor of the target ground is considered. For the assessment of strength and stiffness parameters, the California bearing ratio (CBR), relative density (Dr), internal friction angle (ɸ), and elastic moduli determined by the plate loading test (PLT), soil stiffness gauge (SSG), falling weight deflectometer (FWD) are estimated using NACP. The ACP test with the relationships between engineering parameters and NACP may be an effectively method to assess the overall characteristics of the subgrade.

키워드

과제정보

This work was supported by the Gachon University research fund of 2019 (GCU-2019-0806). This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2018R1D1A1B07048182).

참고문헌

  1. Alshibli, K.A., Abu-Farsakh, M. and Seyman, E. (2005), "Laboratory evaluation of the geogauge and light falling weight deflectometer as construction control tools", J. Mater. Civil Eng., 17(5), 560-569. https://doi.org/10.1061/(asce)0899-1561(2005)17:5(560)
  2. ASTM D6951 (2009), Standard Test Method for Use of the Dynamic Cone Penetrometer in Shallow Pavement Applications, Annual Book of ASTM Standard, 04.03, ASTM International, West Conshohocken, PA, USA. https://doi.org/10.1520/d6951_d6951m
  3. ASTM E2583 (2007), Standard Test Method for Measuring Deflections with a Light Weight Deflectometer, Annual Book of ASTM Standard, ASTM International, West Conshohocken, PA, USA. https://doi.org/10.1520/e2583-07
  4. Balachowski, L. (2007), "Size effect in centrifuge cone penetration tests", Arch. Hydro-Eng. Environ. Mech., 54(3), 161-181.
  5. Briaud, J.L. (2013), Geotechnical Engineering: Unsaturated and Saturated Soils, John Wiley & Sons. https://doi.org/10.1002/9781118686195
  6. Byun, Y.H. and Kim, D.J. (2020), "In-situ modulus detector for subgrade characterization", Int. J. Pavement. Eng. [Online published] https://doi.org/10.1080/10298436.2020.1743291
  7. Byun, Y.H. and Lee, J.S. (2013), "Instrumented dynamic cone penetrometer corrected with transferred energy into a cone tip: a laboratory study", Geotech. Test. J., 36(4), 533-542. https://doi.org/10.1520/GTJ20120115
  8. Chen, D.H., Lin, D.F., Liau, P.H. and Bilyeu, J. (2005), "A correlation between dynamic cone penetrometer values and pavement layer moduli", Geotech. Test. J., 28(1), 42-49. https://doi.org/10.1520/gtj12312
  9. Elhakim, A.F., Elbaz, K. and Amer, M.I. (2014), "The use of light weight deflectometer for in situ evaluation of sand degree of compaction", HBRC J., 10(3), 298-307. https://doi.org/10.1016/j.hbrcj.2013.12.003
  10. Farghaly, A.A. (2015), "Seismic analysis of 3-D two adjacent buildings connected by viscous dampers with effect of underneath different soil kinds", Smart Struct. Syst., Int. J., 15(5), 1293-1309. https://doi.org/10.12989/sss.2015.15.5.1293
  11. Fleming, P.R., Frost, M.W. and Lambert, J.P. (2007), "Review of lightweight deflectometer for routine in situ assessment of pavement material stiffness", Transport. Res. Rec., 2004(1), 80-87. https://doi.org/10.3141/2004-09
  12. Gabr, M.A., Hopkins, K., Coonse, J. and Hearne, T. (2000), "DCP criteria for performance evaluation of pavement layers", J. Perform. Constr. Facil., 14(4), 141-148. https://doi.org/10.1061/(asce)0887-3828(2000)14:4(141)
  13. George, V., Rao, N.C. and Shivashankar, R. (2009), "PFWD, DCP and CBR correlations for evaluation of lateritic subgrades", Int. J. Pavement Eng., 10(3), 189-199. https://doi.org/10.1080/10298430802342765
  14. Gidigasu, M.D. (1980), "Geotechnical evaluation of residual gravels in pavement construction", Eng. Geol., 15(3-4), 173-194. https://doi.org/10.1016/0013-7952(80)90033-2
  15. Harison, J.A. (1987), "Correlation between California bearing ratio and dynamic cone penetrometer strength measurement of soils", Proc. Inst. Civil Eng., 83(4), 833-844. https://doi.org/10.1680/iicep.1987.204
  16. Harison, J.A. (1989), "In situ CBR determination by DCP testing using a laboratory-based correlation", Aust. Road Res., 19(4), 313-317.
  17. Hong, W.T., Byun, Y.H., Kim, S.Y. and Lee, J.S. (2016), "Cone penetrometer incorporated with dynamic cone penetration method for investigation of track substructures", Smart Struct. Syst., Int. J., 18(2), 197-216. https://doi.org/10.12989/sss.2016.18.2.197
  18. Hong, W.T., Kim, S.Y., Lee, S.J. and Lee, J.S. (2017), "Strength and stiffness assessment of railway track substructures using crosshole-type dynamic cone penetrometer", Soil Dyn. Earthq. Eng., 100, 88-97. https://doi.org/10.1016/j.soildyn.2017.05.021
  19. Kim, S.Y. and Lee, J.S. (2020), "Energy correction of dynamic cone penetration index for reliable evaluation of shear strength in frozen sand-silt mixtures", Acta Geotech., 15(4), 947-961. https://doi.org/10.1007/s11440-019-00812-y
  20. Kleyn, E.G. (1975), "The Use of the Dynamic Cone Penetrometer (DCP)", Transvaal Provincial Administration, Report No. 2/74, South Africa.
  21. Kong, S.M., Kim, D.M., Lee, D.Y., Jung, H.S. and Lee, Y.J. (2018), "Field and laboratory assessment of ground subsidence induced by underground cavity under the sewer pipe", Geomech. Eng., Int. J., 16(3), 285-293. https://doi.org/10.12989/gae.2018.16.3.285
  22. Lee, J.S. and Byun, Y.H. (2020), "Instrumented Cone Penetrometer for Dense Layer Characterization", Sensors, 20(20), 5782. https://doi.org/10.3390/s20205782
  23. Lee, C., Kim, K.S., Woo, W. and Lee, W. (2014), "Soil stiffness gauge (SSG) and dynamic cone penetrometer (DCP) tests for estimating engineering properties of weathered sandy soils in Korea", Eng. Geol., 169, 91-99. https://doi.org/10.1016/j.enggeo.2013.11.010
  24. Lee, J.S., Kim, S.Y., Hong, W.T. and Byun, Y.H. (2019), "Assessing subgrade strength using an instrumented dynamic cone penetrometer", Soils Found., 59(4), 930-941. https://doi.org/10.1016/j.sandf.2019.03.005
  25. Livneh, M. (1989), "Validation of correlations between a number of penetration tests and in situ California bearing ratio tests", Transport. Res. Rec., 1219, 56-67.
  26. Livneh, M., Ishai, I. and Livneh, N.A. (1995), "Effect of vertical confinement on dynamic cone penetrometer strength values in pavement and subgrade evaluations", Transport. Res. Rec., 1473, 1-8.
  27. McElvaney, J. and Bundadidjatnika, I.R. (1991), "Strength evaluation of lime-stabilised pavement foundations using the dynamic cone penetrometer", Aust. Road Res., 21(1), 45-52.
  28. Mir, M., Bouafia, A., Rahmani, K., and Aouali, N. (2017), "Analysis of load-settlement behaviour of shallow foundations in saturated clays based on CPT and DPT tests", Geomech. Eng., Int. J., 13(1), 119-139. https://doi.org/10.12989/gae.2017.13.1.119
  29. Mohammadi, S.D., Nikoudel, M.R., Rahimi, H. and Khamehchiyan, M. (2008), "Application of the dynamic cone penetrometer (DCP) for determination of the engineering parameters of sandy soils", Eng. Geol., 101(3-4), 195-203. https://doi.org/10.1016/j.enggeo.2008.05.006
  30. Nazzal, M., Abu-Farsakh, M., Alshibli, K. and Mohammad, L. (2004), "Evaluating the potential use of a portable LFWD for characterizing pavement layers and subgrades", In: Geotechnical Engineering for Transportation Projects, Proceedings of GeoTrans 2004, Los Angeles, CA, USA, July, pp. 915-924. https://doi.org/10.1061/40744(154)79
  31. Putri, E.E., Kameswara, N.S.V.R. and Mannan, M.A. (2012), "Evaluation of modulus of elasticity and modulus of subgrade reaction of soils using CBR test", J. Civil Eng. Res., 2(1), 34-40. https://doi.org/10.5923/j.jce.20120201.05
  32. Roy, S. (2016), "Assessment of soaked California bearing ratio value using geotechnical properties of soils", Resour. Environ., 6(4), 80-87. https://doi.org/10.5923/j.re.20160604.03
  33. Sawangsuriya, A. and Edil, T.B. (2005), "Evaluating stiffness and strength of pavement materials", Proc. Inst. Civil Eng. Geotech. Eng., 158(4), 217-230. https://doi.org/10.1680/geng.2005.158.4.217
  34. Scala, A.J. (1956), "Simple methods of flexible pavement design using cone penetrometers", New Zeal. Eng., 11(2), 34-44.
  35. Schmertmann, J.H., Brown, P.R. and Hartman, J.P. (1978), "Improved strain influence factor diagrams", J. Geotech. Geoenviron. Eng., 104(8), 1131-1135. https://doi.org/10.1061/AJGEB6.0000683
  36. Sujatha, E.R., Geetha, A.R., Jananee, R. and Karunya, S.R. (2018), "Strength and mechanical behaviour of coir reinforced lime stabilized soil", Geomech. Eng., Int. J., 16(6), 627-634. https://doi.org/10.12989/gae.2018.16.6.627
  37. Usluogullari, O.F. and Vipulanandan, C. (2011), "Stress-strain behavior and California bearing ratio of artificially cemented sand", J. Test. Eval., 39(4), 637-645. https://doi.org/10.1520/jte103165
  38. Webster, S.L., Grau, R.H. and Williams, T.P. (1992), "Description and application of dual mass dynamic cone penetrometer", U.S. Army Corps of Engineers Waterways Experiment Station, Vicksburg. Instruction Report GL-92-3.