참고문헌
- Afkhami, S., Ma, O.R. and Soleimani, A. (2013), "A binary harmony search algorithm for solving the maximum clique problem", Int. J. Comput. Appl., 69.
- An, D., Kim, N.H. and Choi, J. (2015), "Practical options for selecting data-driven or physics-based prognostics algorithms with reviews", Reliab. Eng. Syst. Saf., 133, 223-236. https://doi.org/10.1016/j.ress.2014.09.014
- Beheshti, H., Mahmoud, N., Mohammad, M. and Ghasemi, R. (2017), "New neural network-based response surface method for reliability analysis of structures", Neural Comput. Appl. https://doi.org/10.1007/s00521-017-3109-2
- Bishop, C.M. (1995), Neural Networks for Pattern Recognition, Oxford University Press.
- Boller, C., Chang, F.-K. and Fujino, Y. (2009), Encyclopedia of Structural Health Monitoring, John Wiley & Sons.
- Cai, J., Luo, J., Wang, S. and Yang, S. (2018), "Feature selection in machine learning: A new perspective", Neurocomputing, 300, 70-79. https://doi.org/https://doi.org/10.1016/j.neucom.2017.11.077
- Chan, T.H.T., Wong, K., Li, Z. and Ni, Y. (2011), "Structural health monitoring for long span bridges-Hong Kong experience and continuing into Australia", In: Chan, Tommy H T, Thambiratnam, D.P. (Eds.), Structural Health Monitoring in Australia, NOVA Science Publishers, Inc., New York.
- Chuang, L.-Y., Yang, C.-H. and Li, J.-C. (2011), "Chaotic maps based on binary particle swarm optimization for feature selection", Appl. Soft Comput., 11, 239-248. https://doi.org/10.1016/j.asoc.2009.11.014
- Clough, R.W. and Penzien, J. (1993), Dynamics of Structures, 2nd ed., New York McGraw-Hill.
- Coifman, R.R. and Wickerhauser, M.V. (1992), "Entropy-based algorithms for best basis selection", Inf. Theory, IEEE Trans., 38, 713-718. https://doi.org/10.1109/18.119732
- Cortes, C. and Vapnik, V. (1995), "Support-vector networks", Mach. Learn., 20, 273-297. https://doi.org/10.1007/BF00994018
- Cremona, C. and Santos, J. (2018), "Structural health monitoring as a big-data problem", Struct. Eng. Int., 28, 243-254. https://doi.org/10.1080/10168664.2018.1461536
- Das, S. and Saha, P. (2018), "Structural health monitoring techniques implemented on IASC-ASCE benchmark problem: a review", J. Civ. Struct. Heal. Monit., 8, 689-718. https://doi.org/10.1007/s13349-018-0292-5
- Daubechies, I. (1992), Ten lectures on wavelets. Siam.
- Figueiredo, E., Park, G., Figueiras, J., Farrar, C. and Worden, K. (2009), "Structural health monitoring algorithm comparisons using standard data sets", Los Alamos National Laboratory (LANL), Los Alamos, NM, USA.
- Geem, Z.W. (2005), "Harmony search in water pump switching problem", Proceedings of International Conference on Natural Computation, Springer, pp. 751-760.
- Geem, Z.W., Kim, J.H. and Loganathan, G.V. (2001), "A new heuristic optimization algorithm: harmony search", Simulation, 76, 60-68. https://doi.org/10.1177/003754970107600201
- Ghiasi, R. and Ghasemi, M.R. (2018a), "Optimization-based method for structural damage detection with consideration of uncertainties-a comparative study", Smart Struct. Syst. 22, 561-574. https://doi.org/10.1007/s00366-018-0636-0
- Ghiasi, R. and Ghasemi, M.R. (2018b), "An intelligent health monitoring method for processing data collected from the sensor network of structure", Steel Compos. Struct., Int. J., 29(6), 703-716. https://doi.org/10.12989/scs.2018.29.6.703
- Ghiasi, R., Torkzadeh, P. and Noori, M. (2016), "A machine-learning approach for structural damage detection using least square support vector machine based on a new combinational kernel function", Struct. Heal. Monit., 15, 302-316. https://doi.org/10.1177/1475921716639587
- Ghiasi, R., Ghasemi, M.R. and Noori, M. (2018), "Comparative studies of metamodeling and AI-Based techniques in damage detection of structures", Adv. Eng. Softw., 125, 101-112. https://doi.org/10.1016/j.advengsoft.2018.02.006
- Ghiasi, R., Fathnejat, H. and Torkzadeh, P. (2019), "A three-stage damage detection method for large-scale space structures using forward substructuring approach and enhanced bat optimization algorithm", Eng. Comput., 35, 857-874. https://doi.org/10.1007/s00366-018-0636-0
- Gomes, G.F., Mendez, Y.A.D., Alexandrino, P. da S.L., da Cunha, S.S. and Ancelotti, A.C. (2018), "A review of vibration based inverse methods for damage detection and identification in mechanical structures using optimization algorithms and ANN", Arch. Comput. Methods Eng., 26(4), 883-897. https://doi.org/10.1007/s11831-018-9273-4
- Gu, S., Cheng, R. and Jin, Y. (2018), "Feature selection for high-dimensional classification using a competitive swarm optimizer", Soft Comput., 22, 811-822. https://doi.org/10.1007/s00500-016-2385-6
- Gui, G., Pan, H., Lin, Z., Li, Y. and Yuan, Z. (2017), "Data-driven support vector machine with optimization techniques for structural health monitoring and damage detection", KSCE J. Civ. Eng., 21, 523-534. https://doi.org/10.1007/s12205-017-1518-5
- Guyon, I. and Elisseeff, A. (2003), "An introduction to variable and feature selection", J. Mach. Learn. Res., 3, 1157-1182.
- Han, J.-G., Ren, W.-X. and Sun, Z.-S. (2005), "Wavelet packet based damage identification of beam structures", Int. J. Solids Struct., 42, 6610-6627. https://doi.org/10.1016/j.ijsolstr.2005.04.031
- Huang, C.-L. (2009), "ACO-based hybrid classification system with feature subset selection and model parameters optimization", Neurocomputing, 73, 438-448. https://doi.org/10.1016/j.neucom.2009.07.014
- Huang, G.-B., Zhu, Q.-Y. and Siew, C.-K. (2006), "Extreme learning machine: theory and applications", Neurocomputing, 70, 489-501. https://doi.org/10.1016/j.neucom.2005.12.126
- Ivakhnenko, A.G. and Ivakhnenko, G.A. (1995), "The review of problems solvable by algorithms of the group method of data handling (GMDH)", Pattern Recognit. Image Anal. C/C Raspoznavaniye Obraz. I Anal. Izobr., 5, 527-535.
- Jensen, R. (2005), "Combining rough and fuzzy sets for feature selection", Ph.D. Dissertation; University of Edinburgh, UK.
- Johnson, E.A., Lam, H.F., Katafygiotis, L.S. and Beck, J.L. (2003), "Phase I IASC-ASCE structural health monitoring benchmark problem using simulated data", J. Eng. Mech., 130, 3-15. https://doi.org/10.1061/(ASCE)0733-9399(2004)130:1(3)
- Kabir, M.M., Shahjahan, M. and Murase, K. (2011), "A new local search based hybrid genetic algorithm for feature selection", Neurocomputing, 74, 2914-2928. https://doi.org/10.1016/j.neucom.2011.03.034
- Kashef, S. and Nezamabadi-pour, H. (2015), "An advanced ACO algorithm for feature subset selection", Neurocomputing, 147, 271-279. https://doi.org/10.1016/j.neucom.2014.06.067
- Kashef, S., Nezamabadi-pour, H. and Nikpour, B. (2018), "Multilabel feature selection: A comprehensive review and guiding experiments", Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 8, e1240. https://doi.org/10.1002/widm.1240
- Khatibinia, M., Javad Fadaee, M., Salajegheh, J. and Salajegheh, E. (2013), "Seismic reliability assessment of RC structures including soil-structure interaction using wavelet weighted least squares support vector machine", Reliab. Eng. Syst. Saf., 110, 22-33. https://doi.org/10.1016/j.ress.2012.09.006
- Kullaa, J. (2009), "Eliminating environmental or operational influences in structural health monitoring using the missing data analysis", J. Intell. Mater. Syst. Struct., 20, 1381-1390. https://doi.org/10.1177/1045389X08096050
- Kullaa, J. (2011), "Distinguishing between sensor fault, structural damage, and environmental or operational effects in structural health monitoring", Mech. Syst. Signal Process., 25, 2976-2989. https://doi.org/10.1016/j.ymssp.2011.05.017
- Kullaa, J. (2014), "Benchmark data for structural health monitoring", In: EWSHM-7th European Workshop on Structural Health Monitoring.
- Kullaa, J., Santaoja, K. and Eymery, A. (2013), "Vibration-based structural health monitoring of a simulated beam with a breathing crack", In: Key Engineering Materials, Trans Tech Publ, pp. 1093-1100. https://doi.org/10.4028/www.scientific.net/KEM.569-570.1093
- Liu, H. and Yu, L. (2005), "Toward integrating feature selection algorithms for classification and clustering", IEEE Trans. Knowl. Data Eng., 17(4), 491-502. https://doi.org/10.1109/TKDE.2005.66
- Liu, Y., Ju, Y., Duan, C. and Zhao, X. (2011), "Structure damage diagnosis using neural network and feature fusion", Eng. Appl. Artif. Intell., 24, 87-92. https://doi.org/10.1016/j.engappai.2010.08.011
- Mahdavi, M., Fesanghary, M. and Damangir, E. (2007), "An improved harmony search algorithm for solving optimization problems", Appl. Math. Comput., 188, 1567-1579. https://doi.org/10.1016/j.amc.2006.11.033
- Mallat, S.G. (1989), "A theory for multiresolution signal decomposition: the wavelet representation", Pattern Anal. Mach. Intell. IEEE Trans., 11, 674-693. https://doi.org/10.1109/34.192463
- Manjarres, D., Landa-torres, I., Gil-lopez, S., Ser, J. Del, Bilbao, M.N., Salcedo-sanz, S. and Geem, Z.W. (2013), "A survey on applications of the harmony search algorithm", Eng. Appl. Artif. Intell., 1-14. https://doi.org/10.1016/j.engappai.2013.05.008
- Moh'd Alia, O. and Mandava, R. (2011), "The variants of the harmony search algorithm: an overview", Artif. Intell. Rev., 36, 49-68. https://doi.org/10.1007/s10462-010-9201-y
- Monavari, B., Chan, T.H.T., Nguyen, A. and Thambiratnam, D.P. (2018), "Structural deterioration detection using enhanced autoregressive residuals", Int. J. Struct. Stab. Dyn., 18, 1850160. https://doi.org/10.1142/S0219455418501602
- Moyo, P. and Brownjohn, J.M.W. (2002), "Application of Box-Jenkins models for assessing the effect of unusual events recorded by structural health monitoring systems", Struct. Heal. Monit., 1, 149-160. https://doi.org/10.1177/1475921702001002003
- Nguyen, N.-T., Lee, H.-H. and Kwon, J.-M. (2008), "Optimal feature selection using genetic algorithm for mechanical fault detection of induction motor", J. Mech. Sci. Technol., 22, 490-496. https://doi.org/10.1007/s12206-007-1036-3
- Oh, I.-S., Lee, J.-S. and Moon, B.-R. (2004), "Hybrid genetic algorithms for feature selection", IEEE Trans. Pattern Anal. Mach. Intell., 26, 1424-1437. https://doi.org/10.1109/TPAMI.2004.105
- Onwuegbuzie, A.J., Daniel, L. and Leech, N.L. (2007), "Pearson product-moment correlation coefficient", Encycl. Meas. Stat., 2, 751-756.
- Peng, H., Long, F. and Ding, C. (2005), "Feature selection based on mutual information: criteria of max-dependency, maxrelevance, and min-redundancy", IEEE Trans. Pattern Anal. Mach. Intell., 1226-1238. https://doi.org/10.1109/TPAMI.2005.159
- Powers, D.M. (2011), "Evaluation: from precision, recall and Fmeasure to ROC, informedness, markedness and correlation", J. Mach. Learn. Technol., 2(1), 37-63.
- Rashedi, E. and Nezamabadi-pour, H. (2014), "Feature subset selection using improved binary gravitational search algorithm", J. Intell. Fuzzy Syst., 26, 1211-1221. https://doi.org/10.3233/IFS-130807
- Ravanfar, S.A. (2017), "Vibration-based structural damage detection and system identification using wavelet multiresolution analysis", PhD. Dissertation, University of Malaya, Kuala Lumpur, Malaysia.
- Salehi, H. and Burgueno, R. (2018), "Emerging artificial intelligence methods in structural engineering", Eng. Struct., 171, 170-189. https://doi.org/10.1016/j.engstruct.2018.05.084
- Santos, A., Figueiredo, E., Silva, M.F.M., Sales, C.S. and Costa, J.C.W.A. (2015), "Machine learning algorithms for damage detection : Kernel-based approaches", J. Sound Vib., 363, 584-599. https://doi.org/10.1016/j.jsv.2015.11.008
- Suykens, J.A.K. and Vandewalle, J. (1999), "Least squares support vector machine classifiers", Neural Process. Lett., 9, 293-300. https://doi.org/10.1023/A:1018628609742
- Tedesco, J.W., McDougal, W.G. and Ross, C.A. (1999), Structural Dynamics: Theory and Application, Addison-Wesley, Menlo Park, CA, USA.
- Wang, Z. and Ong, K.C.G. (2009), "Structural damage detection using autoregressive-model-incorporating multivariate exponentially weighted moving average control chart", Eng. Struct., 31, 1265-1275. https://doi.org/10.1016/j.engstruct.2009.01.023
- Wang, L., Zhou, P., Fang, J. and Niu, Q. (2011), "A hybrid binary harmony search algorithm inspired by ant system", Proceedings of the 2011 IEEE 5th International Conference on Cybernetics and Intelligent Systems (CIS), IEEE, pp. 153-158.
- Widodo, A., Yang, B.-S. and Han, T. (2007), "Combination of independent component analysis and support vector machines for intelligent faults diagnosis of induction motors", Expert Syst. Appl., 32, 299-312. https://doi.org/10.1016/j.eswa.2005.11.031
- Wu, R.-T. and Jahanshahi, M.R. (2018), "Data fusion approaches for structural health monitoring and system identification: Past, present, and future", Struct. Heal. Monit., 19(2), 552-586. https://doi.org/10.1177/1475921718798769
- Zhong, L., Song, H. and Han, B. (2006), "Extracting structural damage features: Comparison between PCA and ICA", In: Intelligent Computing in Signal Processing and Pattern Recognition, Springer, pp. 840-845.