DOI QR코드

DOI QR Code

Vibration of damaged bio-composite beams reinforced with random short Alfa fibers: Experimental and analytical investigations

  • Adjal, Yassine (Laboratory of Composite Structures and Innovative Materials, Faculty of Mechanical Engineering, University of Science and Technology of Oran- Mohamed Boudiaf (USTO-MB)) ;
  • Sereir, Zouaoui (Laboratory of Composite Structures and Innovative Materials, Faculty of Mechanical Engineering, University of Science and Technology of Oran- Mohamed Boudiaf (USTO-MB)) ;
  • Benzidane, Rachid (Laboratory of Composite Structures and Innovative Materials, Faculty of Mechanical Engineering, University of Science and Technology of Oran- Mohamed Boudiaf (USTO-MB)) ;
  • Bendada, Aya (Laboratory of Applied Mechanics, Faculty of Mechanical Engineering, University of Science and Technology of Oran Mohamed Boudiaf (USTO-MB))
  • Received : 2019.10.28
  • Accepted : 2021.03.16
  • Published : 2021.03.25

Abstract

This paper describes an investigation of the vibration of a cracked bio-composite beam reinforced with random short Alfa fibers using both analytical and experimental methods. The main novelty is the incorporation of local natural short fibers in the dynamic study of bio-based beams in the presence of a transverse crack. In addition, damping coefficient was predicted versus the crack length, crack position and fibers content. In the experimental model, tensile tests were made to predict Young's modulus and ultimate strength of specimens. After that, vibration tests were made to predict natural frequencies and damping coefficients versus crack depths, crack positions and fibers content. In the absence of similar experimental works on Alfa fibers, a simplified analytical model of flexural vibration has been developed to compare the results of experimental measurements. For different boundaries conditions, the linear fracture mechanics combined with Castigliano's theorem were used to estimate the local flexibility matrix at the cracked zone. For the natural frequencies, close agreement was found between the experimentally measured values and those given by the analytical model. From obtained results, we showed the increase in fiber content tends to reduce the strength and the natural frequencies of Alfa reinforced composite beams. Finally, we concluded that depth and position of the crack had a significant effect on the natural frequencies and damping coefficients of the bio-composite beam.

Keywords

References

  1. Abral, H., Kadriadi, D., Rodianus, A., Mastariyanto, P., Ilhamdi, Arief, S.M., Sapuan, S. and Ishak, M.R. (2014), "Mechanical properties of water hyacinth fibers-polyester composites before and after immersion in water", Mater. Des., 58, 125-129. https://doi.org/10.1016/j.matdes.2014.01.043.
  2. Akil, H.M., Omar, M.F., Mazuki, A.A.M., Safiee, S., Ishak, Z.A.M. and Abu Bakar, A. (2011), "Kenaf fiber reinforced composites: A review", Mater. Des., 32(8-9), 4107-4121. https://doi.org/10.1016/j.matdes.2011.04.008.
  3. Amroune S., Bezazi A., Belaadi A., Zhu C., Scarpa F., Rahatekar S. and Imad A. (2015), "Tensile mechanical properties and surface chemical sensitivity of technical fibres from date palm fruit branches (Phoenix dactylifera L)", Compos. Part A Appl. Sci., 71, 95-106. https://doi.org/10.1016/j.compositesa.2014.12.011.
  4. Arrakhiz, F.Z., Elachaby, M., Bouhfid, R., Vaudreuil, S., Essassi, M. and Qaiss, A. (2012), "Mechanical and thermal properties of polypropylene reinforced with Alfa fiber under different chemical treatment", Mater. Des., 35, 318-322. https://doi.org/10.1016/j.matdes.2011.09.023.
  5. Arrakhiz, F.Z., Malha, M., Bouhfid, R., Benmoussa, K. and Qaiss, A. (2013), "Tensile, flexural and torsional properties of chemically treated Alfa, coirand bagasse reinforced polypropylene", Compos. Part B, 47, 35-41. https://doi.org/10.1016/j.compositesb.2012.10.046.
  6. Balakrishnan, P., John, M., Pothen, L., Sreekala, M. and Thomas, S. (2016), "Natural fibre and polymer matrix composites and their applications in aerospace engineering", Adv. Compos. Mater. Aerosp. Eng. Process. Prop., 26, 365-383. https://doi.org/10.1016/B978-0-08-100037-3.00012-2.
  7. Banerjee, J.R. (2001), "Explicit analytical expressions for frequency equation and mode shapes of composite beam", Int. J. Solids Struct., 38(14), 2415-2426. https://doi.org/10.1016/S0020-7683(00)00100-1.
  8. Ben Abderrahmane, M., Ben Cheikch, R. (2008), "Study Cyanoethylated Alfa fiber reinforced composites by dynamic mechanical analysis", Surf. Eng. Appl. Elect., 44(6), 484-488. https://doi.org/10.3103/S1068375508060100
  9. Ben Ameur, M., El Mahi, A., Rebiere, J.L., Abdennadher, M. and Haddar, M. (2018), "Damping analysis of unidirectional carbon/flax fiber hybrid composites", Int. J. Appl. Mech., 10(05), 1850050. https://doi.org/10.1142/S1758825118500503.
  10. Benzidane, R., Sereir, Z., Bennegadi, M.L., Doumalin, P. and Poilane, C. (2018), "Morphology, static and fatigue behavior of a natural UD composite: The date palm petiole wood", Compos. Struct., 203(1), 110-123. https://doi.org/10.1016/j.compstruct.2018.06.122.
  11. Bessadok, A., Roudesli, S., Marais, S., Follain, N. and Lebrun, L. (2009), "Alfa fibres for unsaturated polyester composites reinforcement: Effects of chemical treatments on mechanical and permeation properties", Compos. Part A Appl. Sci., 40(2), 184-195. https://doi.org/10.1016/j.compositesa.2008.10.018.
  12. Brahim, S.B. and Cheikh, R.B. (2007), "Influence of fibre orientation and volume fraction on the tensile properties of unidirectional Alfa-polyester composite", Compos. Sci. Technol., 67, 140-147. https://doi.org/10.1016/j.compscitech.2005.10.006.
  13. Dalmay, P., Smith, A., Chotard, T., Sahay-Turner, P., Gloaguen, V. and Krausz, P. (2010), "Properties of cellulosic fiber reinforced plaster: Influence of hemp or flax fibers on the properties of set gypsum", J. Mater. Sci., 45(3), 793-803. https://doi.org/10.1007/s10853-009-4002-x.
  14. Daneshmehr, A.R., Nateghi, A. and Inman, D.J. (2013), "Free vibration analysis of cracked composite beams subjected to coupled bending-torsion loads based on a first order shear deformation theory", Appl. Math. Model., 37(24), 10074-10091. https://doi.org/10.1016/j.apm.2013.05.062.
  15. Daoud H., ElMahi, A., Rebiere, J.L., Taktak, M. and Haddar, M. ( 2017), "Characterization of the vibrational behaviour of flax fibre reinforced composites with an interleaved natural viscoelastic layer", Appl. Acoust., 128(15), 23-31. https://doi.org/10.1016/j.apacoust.2016.12.005.
  16. Duc, F.N, Bourban, P., Plummer C. and Manson, J. (2014), "Damping of thermoset and thermoplastic flax fibre composites", Compos. Part A Appl. Sci., 64, 115-123. https://doi.org/10.1016/j.compositesa.2014.04.016.
  17. El-Abbassi, F.E., Assarar, M., Ayad, R. and Lamdouar, N. (2015), "Effect of alkali treatment on Alfa fibre as reinforcement for polypropylene based eco-composites: Mechanical behaviour and water ageing", Compos. Struct., 133, 451-457. https://doi.org/10.1016/j.compstruct.2015.07.112.
  18. El-Abbassi, F.E., Assarar, M., Ayad, R., Bourmaud, A. and Baley, C. (2020), "A review on Alfa Fibre (Stipa tenacissima L.): From the plant architecture to the reinforcement of polymer composites", Compos. Part A Appl. Sci., 128, 105677. https://doi.org/10.1016/j.compositesa.2019.105677.
  19. Faruk, O., Bledzki, A.K., Fink, H.P. and Sain, M. (2012), "Biocomposites reinforced with natural fibers: 2000-2010", Prog. Polym. Sci., 37(11), 1552-1596. https://doi.org/10.1016/j.progpolymsci.2012.04.003.
  20. Ghoneam, S.M. (1995), "Dynamic analysis of open cracked composite beams", Compos. Struct., 32(1-4), 3-11. https://doi.org/10.1016/0263-8223(95)00023-2.
  21. Gillich, G.R., Furdui, H., Wahab, M.A. and Korka, Z.I. (2019), "A robust damage detection method based on multi-modal analysis in variable temperature conditions", Mech. Syst. Signal Pr., 115, 361-379. https://doi.org/10.1016/j.ymssp.2018.05.037.
  22. Halphin, J.C. and Tsai, S.W. (1969), "Effect of environment factors on composite materials", Air Force Technical Report AFML-TR,67-423.
  23. Hamamoussea, K., Sereir, Z., Benzidanea, R., Gehringb, F., Gominac, M. and Poilane, C. (2019), "Experimental and numerical studies on the low-velocity impact response of orthogrid epoxy panels reinforced with short plant fibers", Compos. Struct., 211, 469-480. https://doi.org/10.1016/j.compstruct.2019.01.005.
  24. Hanana, S., Elloumi, A., Placet, V., Tounsi, H., Belghith, H. and Bradai, C. (2015), "An efficient enzymatic-based process for the extraction of high-mechanical properties Alfa fibres", Ind. Crop. Prod., 70, 190-200. https://doi.org/10.1016/j.indcrop.2015.03.018.
  25. Khaldi, M., Vivet, A., Bourmaud A., Sereir, Z. and Kada, B. (2016), "Damage analysis of composites reinforced with Alfa fibers: Viscoelastic behavior and debonding at the fiber/matrix interface", J. Appl. Polym., 133(31). https://doi.org/10.1002/app.43760.
  26. Khan, T., Hameed Sultan, MTB., Ariffin, AH. (2018), "The challenges of natural fiber in manufacturing, material selection, and technology application: A review", J. Reinf. Plast. Comp., 37(11), 770-779. https://doi.org/10.1177%2F0731684418756762. https://doi.org/10.1177%2F0731684418756762
  27. Khatir, S. and Wahab, M.A. (2018), "Fast simulations for solving fracture mechanics inverse problems using POD-RBF XIGA and Jaya algorithm", Eng. Fract. Mech., 205, 285-300. https://doi.org/10.1016/j.engfracmech.2018.09.032.
  28. Khatir, S. and Wahab, M.A. (2019a), "A computational approach for crack identification in plate structures using XFEM XIGA PSO and Jaya algorithm", Theor. Appl. Fract. Mech., 103, 102240. https://doi.org/10.1016/j.tafmec.2019.102240.
  29. Khatir, S., Tiachacht, S., Thanh, C.L., Bui, T.Q. and Wahab, M.A. (2019b), "Damage assessment in composite laminates using ANN-PSO-IGA and Cornwell indicator", Compos. Struct., 230, 111509. https://doi.org/10.1016/j.compstruct.2019.111509.
  30. Kim, K., Choe, K., Kim, S. and Wang Q. (2019), "A modeling method for vibration analysis of cracked laminated composite beam of uniform rectangular cross-section with arbitrary boundary condition", Compos. Struct., 208, 127-140. https://doi.org/10.1016/j.compstruct.2018.10.006.
  31. Kisa, M. (2004), "Free vibration analysis of a cantilever composite beam with multiple cracks", Compos. Sci. Technol., 64(9), 1391-1402. https://doi.org/10.1016/j.compscitech.2003.11.002.
  32. Krawczuk, M., Ostachowicz, W. and Zak, A. (1997), "Dynamics of cracked composite material structures", Comput. Mech., 20(1), 79-83. https://doi.org/10.1007/s004660050220.
  33. Kumar, K.S., Siva, I., Jeyaraj, P., Jappes, J.W., Amico, S. and Rajini, N. (2014), "Synergy of fiber length and content on free vibration and damping behavior of natural fiber reinforced polyester composite beams", Mater. Des., 56, 379-386. https://doi.org/10.1016/j.matdes.2013.11.039.
  34. Li, H., Niu, Y., Li, Z., Xu, Z. and Han, Q. (2020), "Modeling of amplitude-dependent damping characteristics of fiber reinforced composite thin plate", Appl. Math. Model., 80, 394-407. https://doi.org/10.1016/j.apm.2019.11.048.
  35. Li, H., Wu, H., Zhang, T., Wen, B. and Guan, Z. (2019), "A nonlinear dynamic model of fiber-reinforced composite thin plate with temperature dependence in thermal environment", Compos. B. Eng., 162, 206-218. https://doi.org/10.1016/j.compositesb.2018.10.070.
  36. Li, H., Xue, P., Guan, Z., Han, Q. and Wen, B. (2018), "A new nonlinear vibration model of fiber-reinforced composite thin plate with amplitude dependent property", Nonlinear Dynam., 94(3), 2219-2241. https://doi.org/10.1007/s11071-018-4486-5.
  37. Li, Y., Mai, Y.W. and Ye, L. (2000), "Sisal fibre and its composites: A review of recent developments", Compos. Sci. Technol., 60(11), 2037-2055. https://doi.org/10.1016/S0266-3538(00)00101-9.
  38. Majkut, L. (2009), "Free and forced vibration of Timoshenko beams described by single difference equation", J. Theor. Appl. Mech., 47(1), 193-210.
  39. Merzoug, A., Bouhamida, B., Sereir, Z., Bezazi, A., Kilic, A. and Candan, Z. (2020), "Quasi-static and dynamic mechanical thermal performance of date palm/glass fiber hybrid composites", J. Ind. Text., 1-23. https://doi.org/10.1177%2F1528083720958036. https://doi.org/10.1177%2F1528083720958036
  40. Monti, A., El Mahi, A., Jendli, Z. and Guillaumat, L. (2017), "Experimental and finite elements analysis of the vibration behaviour of a bio-based composite sandwich beam", Compos. Part B, 110, 466-475. https://doi.org/10.1016/j.compositesb.2016.11.045.
  41. Nikpour, K. and Dimarogonas, A. (1988), "Local compliance of composite cracked bodies", Compos. Sci. Technol., 32(3), 209-223. https://doi.org/10.1016/0266-3538(88)90021-8.
  42. Paiva, M.C., Ammar, I., Campos, A.R., Cheikh, R.B. and Cunha, A.M. (2007), "Alfa fibres: Mechanical, morphological and interfacial characterization", Compos. Sci. Technol., 67(6), 1132-1138. https://doi.org/10.1016/j.compscitech.2006.05.019.
  43. Palanikumar, K. and Subbiah, V. (2019), "Bio Caryota fiber reinforced polymer composites: Mechanical properties and vibration behavior analysis", J. Bionic Eng., 16(3), 480-491. https://doi.org/10.1007/s42235-019-0039-y.
  44. Petrolo, M., Carrera, E., Saeghier, A. and Alawami A.S. (2016), "Free vibration analysis of damaged beams via refined models", Adv. Aircraft Spacecraft Sci., 3(1), 95-112. http://doi.org/10.12989/aas.2016.3.1.095.
  45. Petrone, G., Carzana, A., Ricci, F. and De Rosa, S. (2017), "Damage detection through structural intensity and vibration based techniques", Adv. Aircraft Spacecraft Sci., 4(6), 613-637. http://doi.org/10.12989/aas.2017.4.6.613.
  46. Pickering, K.L., Efendy, M.A. and Le, T.M. (2016), "A review of recent developments in natural fibre composites and their mechanical performance", Compos. Part A Appl. Sci., 83, 98-112. https://doi.org/10.1016/j.compositesa.2015.08.038.
  47. Placet, V. (2009), "Characterization of the thermo-mechanical behaviour of Hemp fibres intended for the manufacturing of high performance composites", Compos. Part A Appl. Sci., 40(8), 1111-1118. https://doi.org/10.1016/j.compositesa.2009.04.031
  48. Pothana, L.A., Oommen, Z. and Thomas, S. (2003), "Dynamic mechanical analysis of banana fiber reinforced polyester composites", Compos. Sci. Technol., 63(2), 283-293. https://doi.org/10.1016/S0266-3538(02)00254-3.
  49. Rajesh, M., Pitchaimani, J. and Rajini, N. (2016), "Free vibration characteristics of banana/sisal natural fibers reinforced hybrid polymer composite beam", Procedia Eng., 144, 1055-1059. https://doi.org/10.1016/j.proeng.2016.05.056.
  50. Rao, K.M. and Rao, K.M. (2007), "Extraction and tensile properties of natural fibers: Vakka, date and bamboo", Compos. Struct., 77(3), 288-295. https://doi.org/10.1016/j.compstruct.2005.07.023.
  51. Saba, N., Jawaid, M., Alothman, O.Y. and Paridah, M.T. (2016), "A review on dynamic mechanical properties of natural fibre reinforced polymer composites", Constr. Build. Mater., 106, 149-159. https://doi.org/10.1016/j.conbuildmat.2015.12.075.
  52. Sahu, S.K. and Das, P. (2020) "Experimental and numerical studies on vibration of laminated composite beam with transverse multiple cracks", Mech. Syst. Signal Pr., 135, 106398. https://doi.org/10.1016/j.ymssp.2019.106398.
  53. Senthilkumar, K., Saba, N., Chandrasekar, M., Jawaid, M., Rajini, N., Alothman, O.Y. and Siengchin, S. (2019), "Evaluation of mechanical and free vibration properties of the pineapple leaf fibre reinforced polyestercomposites", Constr. Build. Mater., 195, 423-431. https://doi.org/10.1016/j.conbuildmat.2018.11.081.
  54. Trachea, D., Donnot, A., Khimeche, K., Benelmir, R. and Brosse, N. (2014), "Physico-chemical properties and thermal stability of microcrystalline cellulose isolated from Alfa fibres", Carbohyd. Polym., 104, 223-230. https://doi.org/10.1016/j.carbpol.2014.01.058.
  55. Wang, K., Inman, D.J. and Farrar, C.R. (2005), "Modeling and analysis of a cracked composite cantilever beam vibrating in coupled bending and torsion", J. Sound Vib., 284(1), 23-49. https://doi.org/10.1016/j.jsv.2004.06.027.
  56. Zaman, I., Ismail, A.E. and Awang, M.K. (2011), "Influence of fiber volume fraction on the tensile properties and dynamic characteristics of coconut fiber reinforced composite", J. Sci. Tech., 1(1), 55-71.
  57. Zhang, X., Thompson D.J. and Sheng, X. (2020), "Differences between Euler-Bernoulli and Timoshenko beam formulations for calculating the effects of moving load on a periodically supported beam", J. Sound Vib., 481, 115432. https://doi.org/10.1016/j.jsv.2020.115432.