Acknowledgement
The authors would like to acknowledge the research funding from Australian Research Council under Discovery Project Scheme (DP150102636) to support PhD scholarship in conducting this research.
References
- Bahar, A., Salavati-Khoshghalb, M. and Ejabati, S.M. (2018), "Seismic protection of smart base-isolated structures using negative stiffness device and regulated damping", Smart Struct. Syst., Int. J., 21(3), 359-371. https://doi.org/10.12989/sss.2018.21.3.359
- Brennan, M., Kovacic, I., Carrella, A. and Waters, T. (2008), "On the jump-up and jump-down frequencies of the Duffing oscillator", J. Sound Vib., 318(4-5), 1250-1261. https://doi.org/10.1016/j.jsv.2008.04.032
- Carrella, A., Brennan, M. and Waters, T. (2007a), "Optimization of a quasi-zero-stiffness isolator", J. Mech. Sci. Technol., 21(6), 946. https://doi.org/10.1007/bf03027074
- Carrella, A., Brennan, M.J. and Waters, T.P. (2007b), "Static analysis of a passive vibration isolator with quasi-zero-stiffness characteristic", J. Sound Vib., 301(3-5), 678-689. https://doi.org/10.1016/j.jsv.2006.10.011
- Carrella, A., Brennan, M.J., Waters, T.P. and Shin, K. (2008), "On the design of a high-static-low-dynamic stiffness isolator using linear mechanical springs and magnets", J. Sound Vib., 315(3), 712-720. https://doi.org/10.1016/j.jsv.2008.01.046
- Cheng, C., Li, S., Wang, Y. and Jiang, X. (2016), "On the analysis of a high-static-low-dynamic stiffness vibration isolator with time-delayed cubic displacement feedback", J. Sound Vib., 378(2016), 76-91. https://doi.org/10.1016/j.jsv.2016.05.029
- Chronopoulos, D., Antoniadis, I. and Ampatzidis, T. (2017), "Enhanced acoustic insulation properties of composite metamaterials having embedded negative stiffness inclusions", Extreme Mech. Lett., 12, 48-54. https://doi.org/10.1016/j.eml.2016.10.012
- Fulcher, B.A., Shahan, D.W., Haberman, M.R., Conner Seepersad, C. and Wilson, P.S. (2014), "Analytical and experimental investigation of buckled beams as negative stiffness elements for passive vibration and shock isolation systems", J. Vib. Acoust., 136(3). https://doi.org/10.1115/1.4026888
- Huang, X., Liu, X., Sun, J., Zhang, Z. and Hua, H. (2014), "Vibration isolation characteristics of a nonlinear isolator using Euler buckled beam as negative stiffness corrector: A theoretical and experimental study", J. Sound Vib., 333(4), 1132-1148. https://doi.org/10.1016/j.jsv.2013.10.026
- Iemura, H. and Pradono, M.H. (2009), "Advances in the development of pseudo-negative-stiffness dampers for seismic response control", Struct. Control Health Monitor., 16(7-8), 784-799. https://doi.org/10.1002/stc.345
- Iemura, H., Kouchiyama, O., Toyooka, A. and Shimoda, I. (2008), "Development of the friction-based passive negative stiffness damper and its verification tests using shaking table", Proceedings of the 14th World Conference on Earthquake Engineering, Vol. 12, pp. 01-0219.
- Kashdan, L., Conner Seepersad, C., Haberman, M. and Wilson, P.S. (2012), "Design, fabrication, and evaluation of negative stiffness elements using SLS", Rapid Prototyping J., 18(3), 194-200. https://doi.org/10.1108/13552541211218108
- Kelly, J.M. (1999), "The role of damping in seismic isolation", Earthq. Eng. Struct. Dyn., 28(1), 3-20. https://doi.org/10.1002/(SICI)1096-9845(199901)28:1<3::AID-EQE801>3.0.CO;2-D
- Lan, C.-C., Yang, S.-A. and Wu, Y.-S. (2014), "Design and experiment of a compact quasi-zero-stiffness isolator capable of a wide range of loads", J. Sound Vib., 333(20), 4843-4858. https://doi.org/10.1016/j.jsv.2014.05.009
- Le, T.D. and Ahn, K.K. (2011), "A vibration isolation system in low frequency excitation region using negative stiffness structure for vehicle seat", J. Sound Vib., 330(26), 6311-6335. https://doi.org/10.1016/j.jsv.2011.07.039
- Li, H.-N., Sun, T., Lai, Z. and Nagarajaiah, S. (2018), "Effectiveness of negative stiffness system in the benchmark structural-control problem for seismically excited highway bridges", J. Bridge Eng., 23(3), 04018001. https://doi.org/10.1061/(asce)be.1943-5592.0001136
- Li, H., Li, Y. and Li, J. (2020), "Negative stiffness devices for vibration isolation applications: A review", Adv. Struct. Eng., 23(8), 1739-1755. https://doi.org/10.1177/1369433219900311
- Liu, X., Huang, X. and Hua, H. (2013), "On the characteristics of a quasi-zero stiffness isolator using Euler buckled beam as negative stiffness corrector", J. Sound Vib., 332(14), 3359-3376. https://doi.org/10.1016/j.jsv.2012.10.037
- Lu, L.-Y. and Lin, G.-L. (2009), "Improvement of near-fault seismic isolation using a resettable variable stiffness damper", Eng. Struct., 31(9), 2097-2114. https://doi.org/10.1016/j.engstruct.2009.03.011
- Malatkar, P. and Nayfeh, A. (2002), "Calculation of the jump frequencies in the response of sdof non-linear systems", J. Sound Vib., 254, 1005-1011. https://doi.org/10.1006/jsvi.2001.4104
- Mizuno, T., Takasaki, M., Kishita, D. and Hirakawa, K. (2007), "Vibration isolation system combining zero-power magnetic suspension with springs", Control Eng. Practice, 15(2), 187-196. https://doi.org/10.1016/j.conengprac.2006.06.001
- Molyneux, W. (1958), "The support of an aircraft for ground resonance tests: a survey of available methods", Aircr. Eng. Aerosp. Technol., 30(6), 160-166. https://doi.org/10.1108/eb032976
- Niu, F., Meng, L., Wu, W., Sun, J., Zhang, W., Meng, G. and Rao, Z. (2014), "Design and analysis of a quasi-zero stiffness isolator using a slotted conical disk spring as negative stiffness structure", J. Vibroeng., 16(4), 1769-1785.
- Piersol, A.G. and Harris, C.M. (2017), Harri's Shock and Vibration Handbook, Fifth Edition, McGraw-Hill.
- Ravindra, B. and Mallik, A. (1994), "Performance of non-linear vibration isolators under harmonic excitation", J. Sound Vib., 170(3), 325-337. https://doi.org/10.1006/jsvi.1994.1066
- Shi, X. and Zhu, S. (2015), "Magnetic negative stiffness dampers", Smart Mater. Struct., 24(7), 072002. https://doi.org/10.1088/0964-1726/24/7/072002
- Shi, X., Zhu, S., Ni, Y. and Li, J. (2018), "Vibration suppression in high-speed trains with negative stiffness dampers", Smart Struct. Syst., Int. J., 21(5), 653-668. https://doi.org/10.12989/sss.2018.21.5.653
- Shi, X., Shi, W. and Xing, L. (2019), "Performance analysis of vehicle suspension systems with negative stiffness", Smart Struct. Syst., Int. J., 24(1), 141-155. https://doi.org/10.12989/sss.2019.24.1.141
- Sun, T., Lai, Z., Nagarajaiah, S. and Li, H.N. (2017), "Negative stiffness device for seismic protection of smart base isolated benchmark building", Struct. Control Health Monitor., 24(11), e1968. https://doi.org/10.1002/stc.1968
- Toyooka, A., Motoyama, H., Kouchiyama, O. and Iwasaki, Y. (2015), "Development of autonomous negative stiffness damper for reducing absolute responses", Quarterly Report of RTRI, 56(4), 284-290. https://doi.org/10.2219/rtriqr.56.4_284
- Viti, S., Cimellaro, G.P. and Reinhorn, A.M. (2006), "Retrofit of a hospital through strength reduction and enhanced damping", Smart Struct. Syst., Int. J., 2(4), 339-355. https://doi.org/10.12989/sss.2006.2.4.339
- Winterflood, J., Blair, D.G. and Slagmolen, B. (2002), "High performance vibration isolation using springs in Euler column buckling mode", Phys. Lett. A, 300(2-3), 122-130. https://doi.org/10.1016/s0375-9601(02)00258-x
- Xiang, S. and Songye, Z. (2019), "A comparative study of vibration isolation performance using negative stiffness and inerter dampers", J. Franklin Inst., 356(14), 7922-7946. https://doi.org/10.1016/j.jfranklin.2019.02.040
- Xu, D., Yu, Q., Zhou, J. and Bishop, S.R. (2013), "Theoretical and experimental analyses of a nonlinear magnetic vibration isolator with quasi-zero-stiffness characteristic", J. Sound Vib., 332(14), 3377-3389. https://doi.org/10.1016/j.jsv.2013.01.034
- Yu, Y., Li, J., Li, Y., Li, S., Li, H. and Wang, W. (2019a), "Comparative investigation of phenomenological modeling for hysteresis responses of magnetorheological elastomer devices", Int. J. Molecular Sci., 20(13), 3216. https://doi.org/10.3390/ijms20133216
- Yu, Y., Li, Y., Li, J. and Gu, X. (2019b), "Characterizing nonlinear oscillation behavior of an MRF variable rotational stiffness device", Smart Struct. Syst., Int. J., 24(3), 303-317. https://doi.org/10.12989/sss.2019.24.3.303
- Yu, Y., Royel, S., Li, Y., Li, J., Yousefi, A.M., Gu, X., Li, S. and Li, H. (2020), "Dynamic modelling and control of shear-mode rotational MR damper for mitigating hazard vibration of building structures", Smart Mater. Struct., 29(11), 114006. https://doi.org/10.1088/1361-665X/abb573
- Zheng, Y., Zhang, X., Luo, Y., Yan, B. and Ma, C. (2016), "Design and experiment of a high-static-low-dynamic stiffness isolator using a negative stiffness magnetic spring", J. Sound Vib., 360, 31-52. https://doi.org/10.1016/j.jsv.2015.09.019
- Zheng, Y., Zhang, X., Luo, Y., Zhang, Y. and Xie, S. (2018), "Analytical study of a quasi-zero stiffness coupling using a torsion magnetic spring with negative stiffness", Mech. Syst. Signal Process., 100, 135-151. https://doi.org/10.1016/j.ymssp.2017.07.028
- Zhou, J., Wang, X., Xu, D. and Bishop, S. (2015), "Nonlinear dynamic characteristics of a quasi-zero stiffness vibration isolator with cam-roller-spring mechanisms", J. Sound Vib., 346, 53-69. https://doi.org/10.1016/j.jsv.2015.02.005
Cited by
- A novel structural seismic protection system with negative stiffness and controllable damping vol.28, pp.10, 2021, https://doi.org/10.1002/stc.2810