참고문헌
- Alazzawy, W.I. (2008), "Static and Dynamic Analysis of Stiffened Plate Used in Machine Tool Column", J. Eng., 14(4), 3099-3111.
- Alazzawy, W.I. and Jweeg, M.J. (2010), "A study of free vibration and fatigue for cross-ply closed cylindrical shells using General Third shell Theory (GTT)", J. Eng., 16(2), 5170-5184.
- AlSaleh, R.J. and Fuggini, C. (2020), "Combining GPS and accelerometers' records to capture torsional response of cylindrical tower", Smart Struct. Syst., Int. J., 25(1), 111-122. https://doi.org/10.12989/sss.2020.25.1.111
- Amabili, M. (1999), "Vibration of circular tubes and shells filled and partially immersed in dense fluids", J. Sound Vib., 221(4), 567-585. https://doi.org/10.1006/jsvi.1998.2050
- Amabili, M., Pellicano, F. and Paidoussis, M.P. (1998), "Nonlinear vibrations of simply supported, circular cylindrical shells, coupled to quiescent fluid", 12(7), 883-918. https://doi.org/10.1006/jfls.1998.0173
- Ansari, R. and Rouhi, H. (2015), "Nonlocal Flugge shell model for the axial buckling of single-walled Carbon nanotubes: An analytical approach", Int. J. Nano Dimens., 6(5), 453-462. https://doi.org/10.7508/IJND.2015.05.002
- Arani, A.G., Kolahchi, R. and Esmailpour, M. (2016), "Nonlinear vibration analysis of piezoelectric plates reinforced with carbon nanotubes using DQM", Smart Struct. Syst., Int. J., 18(4), 787-800. https://doi.org/10.12989/sss.2016.18.4.787
- Arefi, M. and Zenkour, A.M. (2017), "Nonlinear and linear thermo-elastic analyses of a functionally graded spherical shell using the Lagrange strain tensor", Smart Struct. Syst., Int. J., 19(1), 33-38. https://doi.org/10.12989/sss.2017.19.1.033
- Arnold, R.N. and Warburton, G.B. (1949), "Flexural vibrations of the walls of thin cylindrical shells having freely supported ends", Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 197(1049), 238-256. http://dx.doi.org/10.1098/rspa.1949.0061
- Asghar, S., Hussain, M. and Naeem, M. (2019), "Non-local effect on the vibration analysis of double walled carbon nanotubes based on Donnell shell theory", Physica E: Low-dimens. Syst. Nanostruct., 116, 113726. https://doi.org/10.1016/j.physe.2019.113726
- Bisen, H.B., Hirwani, C.K., Satankar, R.K., Panda, S.K., Mehar, K. and Patel, B. (2018), "Numerical study of frequency and deflection responses of natural fiber (Luffa) reinforced polymer composite and experimental validation", J. Natural Fibers, 1-15. https://doi.org/10.1080/15440478.2018.1503129
- Boussoula, A., Boucham, B., Bourada, M., Bourada, F., Tounsi, A., Bousahla, A.A. and Tounsi, A. (2019), "A simple nth-order shear deformation theory for thermomechanical bending analysis of different configurations of FG sandwich plates", Smart Struct. Syst., Int. J., 25(2), 197-218. https://doi.org/10.12989/sss.2020.25.2.197
- Boussoula, A., Boucham, B., Bourada, M., Bourada, F., Tounsi, A., Bousahla, A.A. and Tounsi, A. (2020), "A simple nth-order shear deformation theory for thermomechanical bending analysis of different configurations of FG sandwich plates", Smart Struct. Syst., Int. J., 25(2), 197-218. https://doi.org/10.12989/sss.2020.25.2.197
- Chi, S.H. and Chung, Y.L. (2006a), "Mechanical behavior of functionally graded material plates under transverse load-Part I: Analysis", Int. J. Solids Struct., 43(13), 3657-3674. https://doi.org/10.1016/j.ijsolstr.2005.04.010
- Chi, S.H. and Chung, Y.L. (2006b), "Mechanical behavior of functionally graded material plates under transverse load-part II: numerical results", Int. J. Solids Struct., 43, 3657-3691. https://doi.org/10.1016/j.ijsolstr.2005.04.010
- Chung, H., Turula, P., Mulcahy, T.M. and Jendrzejczyk, J.A. (1981), "Analysis of cylindrical shell vibrating in a cylindrical fluid region", Nuclear Eng. Des., 63(1), 109-1012. https://doi.org/10.1016/0029-5493(81)90020-0
- Dewangan, H.C., Panda, S.K. and Sharma, N. (2020a), "Experimental Validation of Role of Cut-Out Parameters on Modal Responses of Laminated Composite-A Coupled Fe Approach", Int. J. Appl. Mech., 12(6), 2050068. https://doi.org/10.1142/S1758825120500684
- Dewangan, H.C., Sharma, N., Hirwani, C.K. and Panda, S.K. (2020b), "Numerical eigenfrequency and experimental verification of variable cutout (square/rectangular) borne layered glass/epoxy flat/curved panel structure", Mech. Based Des. Struct. Mach., 1-18. https://doi.org/10.1080/15397734.2020.1759432
- Dong, S.B. (1977), "A block-stodola eigen solution technique for large algebraic systems with non-symmetrical matrices", Int. J. Numer. Methods Eng., 11, 247. https://doi.org/10.1002/nme.1620110204
- Ergin, A. and Temarel, P. (2002), "Free vibration of a partially liquid-filled and submerged, horizontal cylindrical shell", J. Sound Vib., 254(5), 951-965. https://doi.org/10.1006/jsvi.2001.4139
- Flugge, W. (1962), Stresses in Shells, (2nd Edition), Springer-Verlag, Berlin, Germany.
- Flugge, W. (1967), Stresses in Shells, (2nd Edition), Springer-Verlag, Berlin, Germany. https://www.springer.com/gp/book/9783662010280
- Forsberg, K. (1964), "Influence of boundary conditions on modal characteristics of cylindrical shells", J. Am. Inst. Aeronaut. Astronaut., 2, 182-189. https://arc.aiaa.org/doi/abs/10.2514/6.1964-77
- Galletly, G.D. (1955), "On the in-vacuo vibrations of simply supported, ring-stiffened cylindrical shells", US National Congress of Applied Mechanics. http//www.vacuo-vibrations-supported-ring-stiffened-cylindrical/dp/B0007FTWBQ
- Gasser, L.F.F. (1987), "Free vibrations on thin cylindrical shells containing liquid", M.S. Thesis, Federal University of Rio de Janerio, peccoppe-ufrj, Rio de Janerio, Portugal. [In Portuguese]
- Ghobaei-Arani, M., Jabbehdari, S. and Pourmina, M.A. (2018), "An autonomic resource provisioning approach for service-based cloud applications: A hybrid approach", Future Gener. Comput. Syst., 78, 191-210. https://doi.org/10.1016/j.future.2017.02.022
- Goncalves, P.B. and Batista, R.C. (1987), "Frequency response of cylindrical shells partially submerged or filled with liquid", J. Sound Vib., 113(1), 59-70. https://doi.org/10.1016/S0022-460X(87)81340-8
- Goncalves, P.B. and Batista, R.C. (1988), "Non-linear vibration analysis of fluid-filled cylindrical shells", J. Sound Vib., 127(1), 133-143. https://doi.org/10.1006/jsvi.2001.4139
- Jiang, J. and Olson, M.D. (1994), "Vibrational analysis of orthogonally stiffened cylindrical shells using super elements", J. Sound Vib., 173, 73-83. https://doi.org/10.1006/jsvi.1994.1218
- Jweeg, M.J. and Alazzawy, W.I. (2007), "A suggested analytical solution for laminated closed cylindrical shells using General Third Shell Theory (GTT)", Al-Nahrain J. Eng. Sci., 10(1), 11-26.
- Jweeg, M.J. and Majeed, W.I. (2020), "Free vibration Analysis solution for laminated truncated conical shells using high orde theory", Proceedings of the 6th Sc Conference of the College of Engineering, University of Baghdad, Volume 3, pp. 208-225.
- Kareem, M.G. and Majeed, W.I. (2019), "Transient dynamic analysis of laminated shallow spherical shell under low-velocity impact", J. Mater. Res. Technol., 8(6), 5283-5300. https://doi.org/10.1016/j.jmrt.2019.08.050
- Koizumi, M. (1997), "FGM Activities in Japan", Composites. https://doi.org/10.1016/S1359-8368(96)00016-9
- Krommer, M., Vetyukova, Y. and Staudigl, E. (2016), "Nonlinear modelling and analysis of thin piezoelectric plates: buckling and post-buckling behavior", Smart Struct. Syst., Int. J., 18(1), 155-181. https://doi.org/10.12989/sss.2016.18.1.155
- Lam, K.Y. and Loy, C.T. (1998), "Influence of boundary conditions for a thin laminated rotating cylindrical shell", Compos. Struct., 41(3-4), 215-228. https://doi.org/10.1016/S0263-8223(98)00012-9
- Lee, S.Y., Huynh, T.C., Dang, N.L. and Kim, J.T. (2019), "Vibration characteristics of caisson breakwater for various waves, sea levels, and foundations", Smart Struct. Syst., Int. J., 24(4), 525-539. https://doi.org/10.12989/sss.2019.24.4.525
- Leissa, A.W. (1973), "Vibration of shells". https://ntrs.nasa.gov/search.jsp?R=19730018197
- Love, A.E.H. (1888), "XVI. The small small free vibrations and deformation of thin elastic shell", Phil. Trans. R. Soc. London, A179, 491-549. https://doi.org/10.1098/rsta.1888.0016
- Loy, C.T. and Lam, K.Y. (1997), "Vibration of cylindrical shells with ring supports", J. Mech. Eng., 39, 455-471. https://doi.org/10.1016/S0020-7403(96)00035-5
- Loy, C.T., Lam, K.Y. and Reddy, J.N. (1999), "Vibration of functionally graded cylindrical shells", Int. J. Mech. Sci., 41(3), 309-324. https://doi.org/10.1016/S0020-7403(98)00054-X
- Marcel Dekker, Books: https://www.abebooks.com/book-search/title/vibrations-shells-plates/author/soedel-werner/
- Mehar, K. and Panda, S.K. (2016a), "Geometrical nonlinear free vibration analysis of FG-CNT reinforced composite flat panel under uniform thermal field", Compos. Struct., 143, 336-346. https://doi.org/10.1016/j.compstruct.2016.02.038
- Mehar, K. and Panda, S.K. (2016b), "Free vibration and bending behaviour of CNT reinforced composite plate using different shear deformation theory", Proceedings of IOP Conference Series: Materials Science and Engineering, 115(1), 012014.
- Mehar, K. and Panda, S.K. (2018a), "Dynamic response of functionally graded carbon nanotube reinforced sandwich plate", Proceedings of IOP Conference Series: Materials Science and Engineering, Vol. 338, No. 1, p. 012017.
- Mehar, K. and Panda, S.K. (2018b), "Thermal free vibration behavior of FG-CNT reinforced sandwich curved panel using finite element method", Polym. Compos., 39(8), 2751-2764. https://doi.org/10.1002/pc.24266
- Mehar, K. and Panda, S.K. (2018c), "Elastic bending and stress analysis of carbon nanotube-reinforced composite plate: Experimental, numerical, and simulation", Adv. Polym. Technol., 37(6), 1643-1657. https://doi.org/10.1002/adv.21821
- Mehar, K. and Panda, S.K. (2018d), "Thermoelastic flexural analysis of FG-CNT doubly curved shell panel", Aircr. Eng. Aerosp. Technol., 90(1), 11-23. https://doi.org/10.1108/AEAT-11-2015-0237
- Mehar, K. and Panda, S.K. (2018e), "Nonlinear finite element solutions of thermoelastic flexural strength and stress values of temperature dependent graded CNT-reinforced sandwich shallow shell structure", Struct. Eng. Mech., Int. J., 67(6), 565-578. https://doi.org/10.12989/sem.2018.67.6.565
- Mehar, K. and Panda, S.K. (2019), "Multiscale modeling approach for thermal buckling analysis of nanocomposite curved structure", Adv. Nano Res., Int. J., 7(3), 181-190. https://doi.org/10.12989/anr.2019.7.3.181
- Mehar, K., Panda, S.K., Dehengia, A. and Kar, V.R. (2016), "Vibration analysis of functionally graded carbon nanotube reinforced composite plate in thermal environment", J. Sandw. Struct. Mater., 18(2), 151-173. https://doi.org/10.1177/1099636215613324
- Mehar, K., Panda, S.K. and Mahapatra, T.R. (2017a), "Thermoelastic nonlinear frequency analysis of CNT reinforced functionally graded sandwich structure", Eur. J. Mech.- A/Solids, 65, 384-396. https://doi.org/10.1016/j.euromechsol.2017.05.005
- Mehar, K., Panda, S.K., Bui, T.Q. and Mahapatra, T.R. (2017b), "Nonlinear thermoelastic frequency analysis of functionally graded CNT-reinforced single/doubly curved shallow shell panels by FEM", J. Thermal Stress., 40(7), 899-916. https://doi.org/10.1080/01495739.2017.1318689
- Mehar, K., Panda, S.K. and Mahapatra, T.R. (2017c), "Theoretical and experimental investigation of vibration characteristic of carbon nanotube reinforced polymer composite structure", Int. J. Mech. Sci., 133, 319-329. https://doi.org/10.1016/j.ijmecsci.2017.08.057
- Mehar, K., Panda, S.K. and Patle, B.K. (2017d), "Thermoelastic vibration and flexural behavior of FG-CNT reinforced composite curved panel", Int. J. Appl. Mech., 9(4), 1750046. https://doi.org/10.1142/S1758825117500466
- Mehar, K., Mahapatra, T.R., Panda, S.K., Katariya, P.V. and Tompe, U.K. (2018a), "Finite-element solution to nonlocal elasticity and scale effect on frequency behavior of shear deformable nanoplate structure", J. Eng. Mech., 144(9), 04018094. https://doi.org/10.1061/(ASCE)EM.1943-7889.0001519
- Mehar, K., Panda, S.K. and Mahapatra, T.R. (2018b), "Thermoelastic deflection responses of CNT reinforced sandwich shell structure using finite element method", Scientia Iranica, 25(5), 2722-2737. https://doi.org/10.24200/SCI.2017.4525
- Mehar, K., Panda, S.K. and Patle, B.K. (2018c), "Stress, deflection, and frequency analysis of CNT reinforced graded sandwich plate under uniform and linear thermal environment: A finite element approach", Polym. Compos., 39(10), 3792- 3809. https://doi.org/10.1002/pc.24409
- Mehar, K., Panda, S.K. and Mahapatra, T.R. (2018d), "Nonlinear frequency responses of functionally graded carbon nanotube-reinforced sandwich curved panel under uniform temperature field", Int. J. Appl. Mech., 10(3), 1850028. https://doi.org/10.1142/S175882511850028X
- Mehar, K., Panda, S.K., Devarajan, Y. and Choubey, G. (2019), "Numerical buckling analysis of graded CNT-reinforced composite sandwich shell structure under thermal loading", Compos. Struct., 216, 406-414. https://doi.org/10.1016/j.compstruct.2019.03.002
- Moazzez, K., Googarchin, H.S. and Sharifi, S.M.H. (2018), "Natural frequency analysis of a cylindrical shell containing a variably oriented surface crack utilizing line-spring model", Thin-Wall. Struct., 125, 63-75. https://doi.org/10.1016/j.tws.2018.01.009
- Naeem, M.N., Ghamkhar, M., Arshad, S.H. and Shah, A.G. (2013), "Vibration analysis of submerged thin FGM cylindrical shells", J. Mech. Sci. Technol., 27(3), 649-656. https://doi.org/10.1007/s12206-013-0119-6
- Najafizadeh, M.M. and Isvandzibaei, M.R. (2007), "Vibration of (FGM) cylindrical shells based on higher order shear deformation plate theory with ring support", Acta Mechanica, 191, 75-91. https://doi.org/10.1007/s00707-006-0438-0
- Poplawski, B., Mikulowski, G., Pisarski, D., Wiszowaty, R. and Jankowski, L. (2019), "Optimum actuator placement for damping of vibrations using the Prestress-Accumulation Release control approach", Smart Struct. Syst., Int. J., 24(1), 27-35. https://doi.org/10.12989/sss.2019.24.1.027
- Ramteke, P., Mehar, K., Sharma, N. and Panda, S. (2020a), "Numerical Prediction of Deflection and Stress Responses of Functionally Graded Structure for Grading Patterns (Power-Law, Sigmoid and Exponential) and Variable Porosity (Even/Uneven)", Scientia Iranica.
- Ramteke, P.M., Mahapatra, B.P., Panda, S.K. and Sharma, N. (2020b), "Static deflection simulation study of 2D Functionally graded porous structure", Materials Today: Proceedings, 33, 5544-5547. https://doi.org/10.1016/j.matpr.2020.03.537
- Sadoughifar, A., Farhatnia, F., Izadinia, M. and Talaeetaba, S.B. (2020), "Size-dependent buckling behaviour of FG annular/circular thick nanoplates with porosities resting on Kerr foundation based on new hyperbolic shear deformation theory", Struct. Eng. Mech., Int. J., 73(3), 225-238. https://doi.org/10.12989/sem.2020.73.3.225
- Sewall, J.L. and Naumann, E.C. (1968), "An experimental and analytical vibration study of thin cylindrical shells with and without longitudinal stiffeners", National Aeronautic and Space Administration; for sale by the Clearinghouse for Federal Scientific and Technical Information, Springfield, Va. https://ntrs.nasa.gov/search.jsp?R=19680024266%202020-06-07T18:48:40+00:00Z
- Shah, A.G., Mahmood, T. and Naeem, M.N. (2009), "Vibrations of FGM thin cylindrical shells with exponential volume fraction law", Appl. Mathe. Mech., 30(5), 607-615. https://doi.org/10.1007/s10483-009-0507-x
- Sharma, C.B. (1974), "Calculation of natural frequencies of fixed-free circular cylindrical shells", J. Sound Vib., 35(1), 55-76. https://doi.org/10.1016/0022-460X(74)90038-8
- Sharma, C.B. and Johns, D.J. (1971), "Vibration characteristics of a clamped-free and clamped-ring-stiffened circular cylindrical shell", J. Sound Vib., 14(4), 459-474. https://doi.org/10.1016/0022-460X(71)90575-X
- Sharma, C.B., Darvizeh, M. and Darvizeh, A. (1998), "Natural frequency response of vertical cantilever composite shells containing fluid", Eng. Struct., 20(8), 732-737. https://doi.org/10.1016/S0141-0296(97)00102-8
- Sharma, P., Singh, R. and Hussain, M. (2019), "On modal analysis of axially functionally graded material beam under hygrothermal effect", Proceedings of the Institution of Mechanical Engineers, Part C: J. Mech. Eng. Sci., 234(5), 1085-1101. https://doi.org/10.1177/0954406219888234.
- Sodel, W. (1981), "Vibration of shell and plates", In: Mechanical Engineering Series, New York, USA.
- Sofiyev, A.H. and Avcar, M. (2010), "The stability of cylindrical shells containing an FGM layer subjected to axial load on the Pasternak foundation", Eng., 2, 228-236. https://doi.org/10.4236/eng.2010.24033
- Suresh, S. and Mortensen, A. (1997), "Functionally graded metals and metal-ceramic composites: Part 2 Thermomechanical behaviour", Int. Mater. Rev., 42, 85-116. https://doi.org/10.1179/imr.1995.40.6.239
- Swaddiwudhipong, S., Tian, J. and Wang, C.M. (1995), "Vibration of cylindrical shells with ring supports", J. Sound Vib., 187(1), 69-93. https://doi.org/10.1006/jsvi.1995.0503
- Tohidi, H., Hosseini-Hashemi, S.H. and Maghsoudpour, A. (2018), "Size-dependent forced vibration response of embedded micro cylindrical shells reinforced with agglomerated CNTs using strain gradient theory", Smart Struct. Syst., Int. J., 22(5), 527-546. https://doi.org/10.12989/sss.2018.22.5.527
- Toulokian, Y.S. (1967), Thermo Physical Properties of High Temperature Solid Materials, New York: Macmillan. https://apps.dtic.mil/dtic/tr/fulltext/u2/649947.pdf
- Wang, C. and Lai, J.C.S. (2000), "Prediction of natural frequencies of finite length circular cylindrical shells", Appl. Acoust., 59(4), 385-400. https://doi.org/10.1016/S0003-682X(99)00039-0
- Wang, C.M., Swaddiwudhipong, S. and Tian, J. (1997), "Ritz method for vibration analysis of cylindrical shells with ring-stiffeners", J. Eng. Mech., 123, 134-143. https://doi.org/10.1061/(ASCE)0733-9399(1997)123:2(134)
- Warburton, G.B. (1965), "Vibration of thin cylindrical shells", J. Mech. Eng. Sci., 7, 399-407. https://doi.org/10.1243/JMES_JOUR_1965_007_062_02
- Wuite, J. and Adali, S. (2005), "Deflection and stress behavior of nanocomposite reinforced beams using a multiscale analysis", Compos. Struct., 71(3-4), 388-396. https://doi.org/10.1016/j.compstruct.2005.09.011
- Xiang, Y., Ma, Y.F., Kitipornchai, S. and Lau, C.W.H. (2002), "Exact solutions for vibration of cylindrical shells with intermediate ring supports", Int. J. Mech. Sci., 44(9), 1907-1924. https://doi.org/10.1016/S0020-7403(02)00071-1
- Xuebin, L. (2008), "Study on free vibration analysis of circular cylindrical shells using wave propagation", J. Sound Vib., 311, 667-682. https://doi.org/10.1016/j.jsv.2007.09.023
- Yeh, J.Y. (2016), "Vibration characteristic analysis of sandwich cylindrical shells with MR elastomer", Smart Struct. Syst., Int. J., 18(2), 233-247. https://doi.org/10.12989/sss.2016.18.2.233
- Zahrai, S.M. and Kakouei, S. (2019), "Shaking table tests on a SDOF structure with cylindrical and rectangular TLDs having rotatable baffles", Smart Struct. Syst., Int. J., 24(3), 391-401. https://doi.org/10.12989/sss.2019.24.3.391
- Zhang, X.M. (2002), "Frequency analysis of submerged cylindrical shells with the wave propagation approach", J. Mech. Sci., 44, 1259-1273. https://doi.org/10.1016/S0020-7403(02)00059-0
- Zhang, X.M., Liu, G.R. and Lam, K.Y. (2001), "Coupled vibration of fluid-filled cylindrical shells using the wave propagation approach", Appl. Acoust., 62, 229-243. https://doi.org/10.1016/S0003-682X(00)00045-1