DOI QR코드

DOI QR Code

Structural analysis and health monitoring of twentieth-century cultural heritage: the Flaminio Stadium in Rome

  • Di Re, Paolo (Department of Structural and Geotechnical Engineering, Sapienza University of Rome) ;
  • Lofrano, Egidio (Department of Structural and Geotechnical Engineering, Sapienza University of Rome) ;
  • Ciambella, Jacopo (Department of Structural and Geotechnical Engineering, Sapienza University of Rome) ;
  • Romeo, Francesco (Department of Structural and Geotechnical Engineering, Sapienza University of Rome)
  • Received : 2020.08.13
  • Accepted : 2020.10.07
  • Published : 2021.02.25

Abstract

This work deals with structural analysis and health monitoring (SHM) of a valuable structure of the twentieth-century cultural heritage: the Flaminio Stadium in Rome. The Flaminio is one of the iconic reinforced concrete sport facilities designed and built by Pier Luigi Nervi for the 1960 Olympic Games of Rome. In view of the foreseen SHM activity, the structural analysis of the Flaminio Stadium is firstly reported by presenting either preliminary analyses, aimed at studying the stadium response under different modeling hypotheses, and a three-dimensional Finite Element (FE) model of the entire structure. It turns out that the main grandstand canopy plays a pivotal role in the Flaminio's structural response to seismic excitation; in addition, its state of conservation raises some concern. Therefore, the structural modeling and dynamic characterization of the canopy is deepened in the paper. Its unusual features, such as geometry, material characteristics and dynamic interplay with the hosting main reinforced concrete frames are thoroughly assessed. To validate the FE results, characterized by a high modal density, and investigate the response of the structure, dynamic tests carried out under operating conditions are presented. The output-only collected data are used to calibrate the initial FE model. The predicted static and dynamic responses of the canopy are eventually exploited to guide the design of a tailored monitoring system. The relevant data management is framed in a heritage building information modeling (HBIM) context. This study draws a viable process for a proactive structural conservation strategy of twentieth-century heritage buildings and infrastructures.

Keywords

Acknowledgement

FR acknowledges the financial support of Getty Foundation, grant n° R-ORG-201734730. The Authors are grateful to Roberto Ziantoni and Roberta Sulpizio of the Department for Sports and Youth Policies of Rome Municipality for their assistance during the experimental campaign.

References

  1. Adriaenssens, S. and Billington, D.P. (2013), "Nervi's cantilevering stadium roofs: Discipline of economy leads to inspiration", J. Int. Assoc. Shell Spatial Struct., 54(176-177), 169-178. https://www.scopus.com/inward/record.uri?eid=2-s2.0-84887469023&partnerID=40&md5=9d7c65b3d81f7198db180f784807f66c
  2. Antonucci, M., Trentin, A. and Trombetti, T. (2014), Pier Luigi Nervi. Gli stadi per il calcio, Bologna University Press, Bologna, Italy.
  3. Bathe, K.J. (2006), Finite Element Procedures, Klaus-Jurgen Bathe, Watertown, MA, USA.
  4. Bentz, E.C., Vecchio, F.J. and Collins, M.P. (2006), "Simplified modified compression field theory for calculating shear strength of reinforced concrete elements", ACI Struct. J., 103(4), 614-624. https://doi.org/10.14359/16438
  5. Bruno, N. and Roncella, R. (2019), "HBIM for Conservation: A New Proposal for Information Modeling", Remote Sensing, 11(1751), 24 p. https://doi.org/10.3390/rs11151751
  6. Caprioli, A., Vanali, M. and Cigada, A. (2009), "One year of structural health monitoring of the Meazza Stadium in Milan: Analysis of the collected data", Proceedings of the Society for Experimental Mechanics Series, 9 p. https://www.scopus.com/inward/record.uri?eid=2-s2.0-84861561446&partnerID=40&md5=caccb796611d37242372cd517a69057f
  7. Chang, C.-M., Chou, J.-Y., Tan, P. and Wang, L. (2017), "A sensor fault detection strategy for structural health monitoring systems", Smart Struct. Syst., Int. J., 20(1), 43-52. https://doi.org/10.12989/sss.2017.20.1.043
  8. Ciampi, V. and Carlesimo, L. (1986), "A nonlinear beam element for seismic analysis of structures", Proceedings of the 8th European Conference on Earthquake Engineering, 8 p.
  9. Consiglio Superiore dei Lavori Pubblici - Italia (Italian Superior Council of Public Works 2018), Aggiornamento delle Norme Tecniche per le Costruzioni (New Italian Building Code), Decreto Ministeriale del 17 gennaio 2018, Gazzetta Ufficiale Supplemento ordinario n. 8 del 20-2-2018 Serie generale - n. 42. [In Italian]
  10. Di Re, P., Addessi, D. and Paolone, A. (2019), "Mixed beam formulation with cross-section warping for dynamic analysis of thin-walled structures", Thin-Wall. Struct., 141, 554-575. https://doi.org/10.1016/j.tws.2019.04.014
  11. Diord, S., Magalhaes, F., Cunha, A. and Caetano, E. (2017), "High spatial resolution modal identification of a stadium suspension roof: Assessment of the estimates uncertainty and of modal contributions", Eng. Struct., 135, 117-135. https://doi.org/10.1016/j.engstruct.2016.12.060
  12. Franceschetti, M. (2015), "Stadio Flaminio Roma - Indagini strutturali (Flaminio Stadium of Rome - Structural investigations)", Technical Report as Court Appointed Expert Witness. [In Italian]
  13. Gattulli, V., Lofrano, E., Paolone, A. and Potenza, F. (2019), "Measured properties of structural damping in railway bridges", J. Civil Struct. Health Monitor., 9(5), 639-653. https://doi.org/10.1007/s13349-019-00358-3
  14. Gazetas, G. (1991), "Formulas and charts for impedances of surface and embedded foundations", J. Geotech. Eng., 117(9), 1363-1381. https://doi.org/10.1061/(ASCE)0733-9410(1991)117:9(1363)
  15. G.I.A. L.T.D. (2007), Ristrutturazione dello stadio Flaminio di Roma - Rilievo delle strutture e della consistenza del cls (Restoration of the Flaminio stadium in Rome - Survey of the structures and of the consistency of concretes), Technical Report. [In Italian]
  16. ICOMOS-ISC20C (2017), "Approaches to the Conservation of Twentieth Century Cultural Heritage, Madrid-New Delhi document", International Committee on Twentieth Century Heritage, 14 p. http://www.icomos-isc20c.org/pdf/madrid-newdelhi-document-2017.pdf
  17. Katili, I. (1993), "A new discrete Kirchhoff-Mindlin element based on Mindlin-Reissner plate theory and assumed shear strain fields - Part I: An extended DKT element for thick-plate bending analysis", Int. J. Numer. Methods Eng., 36(11), 1859-1883. https://doi.org/10.1002/nme.1620361106
  18. Kim, R.E., Li, J., Spencer, B.F., Jr., Nagayama, T., Mechitov, K.A. (2016), "Synchronized sensing for wireless monitoring of large structures", Smart Struct. Syst., Int. J., 18(5), 885-909. https://doi.org/10.12989/sss.2016.18.5.885
  19. Krishnamurthy, V., Fowler, K. and Sazonov, E. (2008), "The effect of time synchronization of wireless sensors on the modal analysis of structures", Smart Mater. Struct., 17(5), Article No. 055018, 13 p. https://doi.org/10.1088/0964-1726/17/5/055018
  20. Lenticchia, E., Ceravolo, R. and Chiorino, C. (2017), "Damage scenario-driven strategies for the seismic monitoring of XX century spatial structures with application to Pier Luigi Nervi's Turin Exhibition Centre", Eng. Struct., 137, 256-267. https://doi.org/10.1016/j.engstruct.2017.01.067
  21. Lenticchia, E., Ceravolo, R. and Antonaci, P. (2018), "Sensor placement strategies for the seismic monitoring of complex vaulted structures of the modern architectural heritage", Shock Vib., Article No. 3739690, 14 p. https://doi.org/10.1155/2018/3739690
  22. Lofrano, E., Romeo, F. and Paolone, A. (2019), "A pseudo-modal structural damage index based on orthogonal empirical mode decomposition", Proceedings of the Institution of Mechanical Engineers, Part C: J. Mech. Eng. Sci., 233(23-24), 7545-7564. https://doi.org/10.1177/0954406219885972
  23. Lofrano, E., Paolone, A. and Ruta, G. (2020), "Dynamic damage identification using complex mode shapes", Struct. Control Health Monitor., 27(12), e2632. https://doi.org/10.1002/stc.2632
  24. Matthews, S., Bigaj-van Vliet, A., Walraven, J., Mancini, G. and Dieteren, G. (2018), "fib Model Code 2020: Towards a general code for both new and existing concrete structures", Struct. Concrete, 19(4), 969-979. https://doi.org/10.1002/suco.201700198
  25. Midas (2018), MIDAS GEN - Analysis reference manual. https://www.cspfea.net
  26. Midas (2020), MIDAS FEA NX - Analysis reference manual. https://www.cspfea.net
  27. Nervi, P.L. (1933), "Considerazioni tecniche e costruttive sulle gradinate e pensiline per stadi" (Technical and construction considerations on grandstands and canopies for stadia), Casabella: rivista di architettura e di tecnica, December 1933, 10-13. [In Italian]
  28. Nervi, P.L. and Nervi, A. (1960), "Lo Stadio Flaminio a Roma" (The Flaminio Stadium in Rome), Vitrum, 121. [In Italian]
  29. Olmo, C. and Chiorino, C. (2010), Pier Luigi Nervi. Architecture as Challenge, Silvana Editoriale, Milano, Italy
  30. Presidente del Consiglio dei Ministri - Italia (Italian President of the Council of Ministers 2011), Valutazione e riduzione del rischio sismico del patrimonio culturale con riferimento alle Norme tecniche per le costruzioni di cui al Decreto Ministeriale 14 gennaio 2008 (Evaluation and reduction of the seismic risk of cultural heritage with reference to the buildings technical code of January 14th 2008), Direttiva del 9 febbraio 2011, Gazzetta Ufficiale Supplemento ordinario n. 54 del 26-2-2011 Serie generale - n. 47. [In Italian]
  31. Ragusa, S., Rebecchini, S., Napoli, P. and Giorgetti, R. (1959), Lavori di costruzione dello stadio "Flaminio" in Roma (Construction work for the "Flaminio" stadium of Rome), Certificato di collaudo. [In Italian]
  32. Risorse Per Roma S.P.A. (2013), Stadio Flaminio - Stato di conservazione delle strutture (Flaminio Stadium - State of preservation of the structures), Technical Report. [In Italian]
  33. Romeo, F. (2013), "Presenting Nervi's work through scale models: the NerViLaB", J. Int. Assoc. Shell Spatial Struct., 54(176-177), 211-222. https://www.scopus.com/inward/record.uri?eid=2-s2.0-84887451610&partnerID=40&md5=1a66140e59dc4b2933986b2241d4b2f3
  34. Romeo, F. and Di Re, P. (2019), "Structural analysis and safety seismic assessment of the Flaminio Stadium", Technical Report of the Research Project "Keeping it modern".
  35. Romeo, F., Giodice, M., Simione, M. and Ranghiasci, L. (2019), HBIM per il Piano di Conservazione dello Stadio Flaminio di Roma (HBIM for the Conservation Plan of the Flaminio Stadium in Rome), BIM&DIGITAL Awards 19, first prize in Heritage improvement and restoration.
  36. Rossi, S. (2013), "From the ephemeral city to the 'Italy Regions Park' Rome and the regional exhibition of Expo 1911", Citta e Storia, 8(1), 9-105. https://www.scopus.com/inward/record.uri?eid=2-s2.0-84915767553&partnerID=40&md5=4b83763f911267626abbdea0d2c6586d
  37. Spacone, E., Ciampi, V. and Filippou, F.C. (1996), "Mixed formulation of nonlinear beam finite element", Comput. Struct., 58(1), 71-83. https://doi.org/10.1016/0045-7949(95)00103-N
  38. Sun, Z., Krishnan, S., Hackmann, G., Yan, G., Dyke, S.J., Lu, C. and Irfanoglu, A. (2015), "Damage detection on a full-scale highway sign structure with a distributed wireless sensor network", Smart Struct. Syst., Int. J., 16(1), 223-242. https://doi.org/10.12989/sss.2015.16.1.223
  39. Taerwe, L. and Matthys, S. (2013), fib model code for concrete structures 2010, Ernst & Sohn, Wiley, Berlin, Germany.
  40. Tiberi, M., Carbonara, E. and Sforzini, V. (2017), "Sustainable requalification in restricted area: the case study of Flaminio stadium in Rome", Energy Procedia, 126, 305-312. https://doi.org/10.1016/j.egypro.2017.08.234
  41. Viggiani, C. (1993), Fondazioni, Cooperativa Universitaria Editrice Napoletana, Napoli, Italy. [In Italian]
  42. Zhang, L., Wang, T. and Tamura, Y. (2010), "A Frequency-Spatial Domain Decomposition (FSDD) method for operational modal analysis", Mech. Syst. Signal Process., 24(5), 1227-1239. https://doi.org/10.1016/j.ymssp.2009.10.024.