Acknowledgement
This study is sponsored by the National Science Foundation of China (Grant No: 51878483), and the Key Laboratory of Performance Evolution and Control for Engineering Structures (Tongji University), Ministry of Education (No. 2019KF-6). The third author would like to thank the financial support from the Hong Kong PhD Fellowship Scheme (HKPFS) provided by the Research Grants Council of the HKSAR.
References
- ANSYS (2018), ANSYS Maxwell 3D, ANSYS Electronic 19.0, ANSYS, Inc.
- Ao, W.K. and Reynolds, P. (2019), "Evaluation of eddy current damper for vibration control of a frame structure", J. Physics Commun., 3(5), 055013. https://doi.org/10.1088/2399-6528/ab1deb
- Bae, J., Hwang, J., Park, J. and Kwag, D. (2009), "Modeling and experiments on eddy current damping caused by a permanent magnet in a conductive tube", J. Mech. Sci. Technol., 23(11), 3024-3035. https://doi.org/10.1007/s12206-009-0819-0
- Bae, J., Hwang, J., Kwag, D., Park, J. and Inman, D.J. (2014), "Vibration suppression of a large beam structure using tuned mass damper and eddy current damping", Shock Vib., 2014, 893914. https://doi.org/10.1155/2014/893914
- Bourquin, F., Caruso, G., Peigney, M. and Siegert, D. (2014), "Magnetically tuned mass dampers for optimal vibration damping of large structures", Smart Mater. Struct., 23(8), 085009. https://doi.org/10.1088/0964-1726/23/8/085009
- Chen, W., Jiang, J., Liu, J., Bai, S. and Chen, W. (2013), "A passive eddy current damper for vibration suppression of a force sensor", J. Phys. D: Appl. Phys., 46(7), 075001. https://doi.org/10.1088/0022-3727/46/7/075001
- Diez-Jimenez, E., Rizzo, R., Gomez-Garcia, M.J. and Corral-Abad, E. (2019), "Review of passive electromagnetic devices for vibration damping and isolation", Shock Vib., 2019, 1250707. https://doi.org/10.1155/2019/1250707
- Ebrahimi, B., Khamesee, M.B. and Golnaraghi, M.F. (2008), "Design and modeling of a magnetic shock absorber based on eddy current damping effect", J. Sound Vib., 315(4-5), 875-889. https://doi.org/10.1016/j.jsv.2008.02.022
- Ebrahimi, B., Khamesee, M.B. and Golnaraghi, M.F. (2009), "Eddy current damper feasibility in automobile suspension: modeling, simulation and testing", Smart Mater. Struct., 18(1), 015017. https://doi.org/10.1088/0964-1726/18/1/015017
- Engineering ToolBox (2001), [Online] Available at: https://www.engineeringtoolbox.com (Last accessed on March 10, 2020).
- Feudo, S.L., Allani, A., Cumunel, G., Argoul, P., Maceri, F. and Bruno, D. (2017), "Experimental analysis of a tuned mass damper with eddy current damping effect", Models, Simulation, and Experimental Issues in Structural Mechanics, Springer Series in Solid and Structural Mechanics, Springer, Cham, 8: 235-248. https://doi.org/10.1007/978-3-319-48884-4_13
- Heald, M.A. (1988), "Magnetic braking: improved theory", Am. J. Phys., 56(6), 521-522. https://doi.org/10.1119/1.15570
- Huang, Z.W., Hua, X.G., Chen, Z.Q. and Niu, H.W. (2018), "Modeling, testing, and validation of an eddy current damper for structural vibration control", J. Aerosp. Eng., 31(5), 04018063. https://doi.org/10.1061/(ASCE)AS.1943-5525.0000891
- Kazimierczuk, M. (2014), High-Frequency Magnetic Components, (2nd Edition), John Wiley & Sons, Ltd.
- Li, J., Zhu, S. and Shen, J. (2019), "Enhance the damping density of eddy-current and electromagnetic dampers", Smart Struct. Syst., Int. J., 24(1), 15-26. https://doi.org/10.12989/sss.2019.24.1.015
- Loong, C.N., Shan, J., Shi, Z. and Chang, C.C. (2020), "Approximate analysis of eddy-current force under time-varying velocity motion or structural control", J. Sound Vib., 475, 115295. https://doi.org/10.1016/j.jsv.2020.115295
- Lu, X., Zhang, Q., Weng, D., Zhou, Z., Wang, S., Mahin, S.A., Ding, S. and Qian, F. (2017), "Improving performance of a super tall building using a new eddy-current tuned mass damper", Struct. Control Health Monitor., 24(3), e1882. https://doi.org/10.1002/stc.1882
- Lu, X., Zhang, Q., Wu, W. and Shan, J. (2019), "Data-driven two-level performance evaluation of eddy-current tuned mass damper for building structures using shaking table and field testing", Comput.-Aided Civil Infrastruct. Eng., 34(1), 38-57. https://doi.org/10.1111/mice.12373
- MATLAB (2018), 9.7.0.1190202 (R2019b), Natick, Massachusetts: The MathWorks Inc.
- Pan, Q., He, T., Xiao, D. and Liu, X. (2016), "Design and damping analysis of a new eddy current damper for aerospace applications", Latin Am. J. Solids Struct., 13(11), 1997-2011. https://doi.org/10.1590/1679-78252272
- Schieber, D. (1975), "Optimal dimensions of rectangular electromagnet for braking purposes", IEEE Transact. Magnet., 11(3), 948-952. https://doi.org/10.1109/TMAG.1975.1058768
- Shi, Z., Shan, J., Wu, W. and Loong, C.N. (2020), "Mechanical modeling of eddy current damping regarding frequencydependence with test validation". [Under review]
- Sodano, H.A., Bae, J., Inman, D.J. and Belvin, W.K. (2005), "Concept and model of eddy current damper for vibration suppression of a beam", J. Sound Vib., 288(4-5), 1177-1196. https://doi.org/10.1016/j.jsv.2005.01.016
- Wang, Z., Chen, Z. and Wang, J. (2012), "Feasibility study of a large-scale tuned mass damper with eddy current damping mechanism", Earthq. Eng. Eng. Vib., 11(3), 391-401. https://doi.org/10.1007/s11803-012-0129-x
- Wang, W., Dalton, D., Hua, X., Wang, X., Chen, Z. and Song, G. (2017), "Experimental study on vibration control of a submerged pipeline model by eddy current tuned mass damper", Appl. Sci., 7(10), 987. https://doi.org/10.3390/app7100987
- Wu, W., Shan, J. and Ruan, K. (2018), "A kind of self-sensing eddy-current type energy consumption replaceable coupling beam", National Intellectual Property Administration, PRC Patent CN207436305U, September 21, 2018.
- Zhu, S., Shen, W. and Xu, Y. (2012), "Linear electromagnetic devices for vibration damping and energy harvesting: modeling and testing", Eng. Struct., 34, 198-212. https://doi.org/10.1016/j.engstruct.2011.09.024
- Zuo, L., Chen, W. and Nayfeh, S. (2011), "Design and analysis of a new type of electromagnetic damper with increased energy density", J. Vib. Acoust., 133(4), 041006. https://doi.org/10.1115/1.4003407