Acknowledgement
This research work is supported by the National Nature Science Foundation of China (Grant No. 52025083, 51878449) and the Fundamental Research Funds for the Central Universities.
References
- Bertinetto, L., Valmadre, J., Henriques, J.F., Vedaldi, A. and Torr, P.H.S. (2016), "Fully-convolutional siamese networks for object tracking", Lecture Notes in Computer Science: Computer Vision - ECCV 2016 Workshops, Vol. 9914, pp. 850-865.
- Bierling, M. (1988), "Displacement estimation by hierarchical blockmatching", Proceedings of Visual Communications and Image Processing '88: Third in a Series, November, Cambridge, MA, USA, Vol. 1001, pp. 942-953. https://doi.org/10.1117/12.969046
- Busca, G., Cigada, A., Mazzoleni, P. and Zappa, E. (2014), "Vibration monitoring of multiple bridge points by means of a unique vision-based measuring system", Experim. Mech., 54(2), 255-271. https://doi.org/10.1007/s11340-013-9784-8
- Dong, C.Z., Bas, S. and Catbas, F.N. (2019), "A completely noncontact recognition system for bridge influence line using portable cameras and computer vision", Smart Struct. Syst., Int. J., 24(5), 617-630. https://doi.org/10.12989/sss.2019.24.5.617
- Feng, D.M. and Feng, M.Q. (2016), "Vision-based multipoint displacement measurement for structural health monitoring", Struct. Control Health Monitor., 23(5), 876-890. https://doi.org/10.1002/stc.1819
- Feng, M.Q., Fukuda, Y., Feng, D.M. and Mizuta, M. (2015), "Nontarget vision sensor for remote measurement of bridge dynamic response", J. Bridge Eng., 20(12), 04015023. https://doi.org/10.1061/(ASCE)BE.1943-5592.0000747
- Forsyth, D.A. and Ponce, J. (2002), Computer Vision: A Modern Approach, Prentice Hall Professional Technical Reference.
- Fukuda, Y., Feng, M.Q., Narita, Y., Kaneko, S. and Tanaka, T. (2013), "Vision-based displacement sensor for monitoring dynamic response using robust object search algorithm", IEEE Sensors J., 13(12), 4725-4732. https://doi.org/10.1109/JSEN.2013.2273309
- Harris, C. and Stephens, M. (1988), "A combined corner and edge detector", Proceedings of 4th Alvey Vision Conference.
- He, K., Zhang, X., Ren, S. and Sun, J. (2015), "Delving deep into rectifiers: surpassing human-level performance on imagenet classification", Proceedings of the IEEE International Conference on Computer Vision (ICCV), December, pp. 1026-1034.
- Huang, N.E., Shen, Z., Long, S.R. and Wu, M.C. (1998), "The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis", Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Science, 454(1971), 903-995. https://doi.org/10.1098/rspa.1998.0193
- Huang, L., Zhao, X. and Huang, K. (2019), "Got-10k: A large high-diversity benchmark for generic object tracking in the wild", IEEE Transact. Pattern Anal. Mach. Intell., 43(5), 1562-1577. https://doi.org/10.1109/TPAMI.2019.2957464
- Ji, Y.F. and Chang, C.C. (2008), "Nontarget image-based technique for small cable vibration measurement", J. Bridge Eng., 13(1), 34-42. https://doi.org/10.1061/(ASCE)1084-0702(2008)13:1(34)
- Jo, H., Sim, S.H., Tatkowski, A., Spencer, B.F. and Nelson, M.E. (2013), "Feasibility of displacement monitoring using low-cost GPS receivers", Struct. Control Health Monitor., 20(9), 1240-1254. https://doi.org/10.1002/stc.1532
- Jung, H.J., Lee, J.H., Yoon, S. and Kim, I.H. (2019), "Bridge Inspection and condition assessment using Unmanned Aerial Vehicles (UAVs): Major challenges and solutions from a practical perspective", Smart Struct. Syst., Int. J., 24(5), 669-681. https://doi.org/10.12989/sss.2019.24.5.669
- Kohut, P., Holak, K., Uhl, T., Ortyl, L., Owerko, T., Kuras, P. and Kocierz, R. (2013), "Monitoring of a civil structure's state based on noncontact measurements", Struct. Health Monitor., 12(5-6), 411-429. https://doi.org/10.1177/1475921713487397
- Lee, J.H., Jung, C.Y., Choi, E. and Cheung, J.H. (2017), "Vision-based multipoint measurement systems for structural in-plane and out-of-plane movements including twisting rotation", Smart Struct. Syst., Int. J., 20(5), 563-572. https://doi.org/10.12989/sss.2017.20.5.563
- Li, B., Yan, J.J., Wu, W., Zhu, Z. and Hu, X.L. (2018), "High performance visual tracking with siamese region proposal network", Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June, pp. 8971-8980.
- Liu, C.X., Chen, L.C., Schroff, F., Adam, H., Hua, W., Yuille, A.L. and Li, F.F. (2019a), "Auto-deeplab: Hierarchical neural architecture search for semantic image segmentation", Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June, pp. 82-92.
- Liu, J.T., Yang, X.X. and Li, L. (2019b), "VibroNet: Recurrent neural networks with multi-target learning for image-based vibration frequency measurement", J. Sound Vib., 457, 51-66. https://doi.org/10.1016/j.jsv.2019.05.027
- Lu, L. and Du, W.T. (2011), "The vehicle-borne electronic image stabilization system based on Gray Projection Algorithm", Proceedings of International Conference on Electric Information and Control Engineering, April, Wuhan, China, pp. 4687-4690.
- Luo, L.X. and Feng, M.Q. (2018), "Edge-enhanced matching for gradient-based computer vision displacement measurement", Comput.-Aided Civil Infrastruct. Eng., 33(12), 1019-1040. https://doi.org/10.1111/mice.12415
- Lydon, D., Taylor, S.E., Lydon, M., Rincon, J.M. and Hester, D. (2019), "Development and testing of a composite system for bridge health monitoring utilizing computer vision and deep learning", Smart Struct. Syst., Int. J., 24(6), 723-732. https://doi.org/10.12989/sss.2019.24.6.723
- Mas, D., Ferrer, B., Espinosa, J., Perez Rodriguez, J., Roig Hernandez, A.B. and Illueca Contri, C. (2011), "High speed imaging and algorithms for non invasive vibrations measurement", EVACES 2011 - Proceedings of the 4th International Conference on Experimental Vibration Analysis for Civil Engineering Structures, Varenna, Italy, October.
- Narazaki, Y., Hoskere, V., Eick, B.A., Smith, M.D. and Spencer, B.F. (2019), "Vision-based dense displacement and strain estimation of miter gates with the performance evaluation using physics-based graphiscs models", Smart Struct. Syst., Int. J., 24(6), 709-721. https://doi.org/10.12989/sss.2019.24.6.709
- Nassif, H.H., Gindy M. and Davis, J. (2005), "Comparison of laser Doppler vibrometer with contact sensors for monitoring bridge deflection and vibration", NDT & E International, 38(3), 213-218. https://doi.org/10.1016/j.ndteint.2004.06.012
- Oh, B.K., Glisic, B., Kim, Y. and Park, H.S. (2019), "Convolutional neural network-based wind-induced response estimation model for tall buildings", Comput.-Aided Civil Infrastruct. Eng., 34(10), 843-858. https://doi.org/10.1111/mice.12476
- Pan, B., Tian, L. and Song, X.L. (2016), "Real-time, non-contact and targetless measurement of vertical de- flection of bridges using off-axis digital image correlation", NDT & E Int., 79, 73-80. https://doi.org/10.1016/j.ndteint.2015.12.006
- Peng, S.Y., Yu, Y.X., Wang, K. and He, L. (2020), "Accurate Anchor Free Tracking", arXiv, 2006.07560.
- Pukelsheim, F. (1994), "The three sigma rule", The American Statistician, 48(2), 88-91. https://doi.org/10.2307/2684253
- Ribeiro, D., Calcada, R., Ferreira, J. and Martins, T. (2014), "Noncontact measurement of the dynamic dis- placement of railway bridges using an advanced video-based system", Eng. Struct., 75, 164-180. https://doi.org/10.1016/j.engstruct.2014.04.051
- Rosten, E. and Drummond, T. (2005), "Fusing points and lines for high performance tracking", Proceedings of the 10th IEEE International Conference on Computer Vision, ICCV 2005, pp. 1508-1515.
- Shi, J.B. (1994), "Good features to track", Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, June, pp. 593-600. https://doi.org/10.1109/CVPR.1994.323794
- Spencer, B.F., Hoskere, V. and Narazaki, Y. (2019), "Advances in computer vision-based civil infrastructure inspection and monitoring", Engineering, 5(2), 199-222. https://doi.org/10.1016/j.eng.2018.11.030
- Wahbeh, A.M., Caffrey, J.P. and Masri, S.F. (2003), "A vision-based approach for the direct measurement of displacements in vibrating systems", Smart Mater. Struct., 12(5), 785-794. https://doi.org/10.1088/0964-1726/12/5/016
- Wu, Y., Lim, J. and Yang, M. (2015), "Object tracking benchmark", IEEE Transactions on Pattern Analysis and Machine Intelligence, 37(9), 1834-1848. https://doi.org/10.1109/TPAMI.2014.2388226
- Ye, X.W., Dong, C.Z. and Liu, T. (2016), "A review of machine vision-based structural health monitoring: methodologies and applications", J. Sensors, 7103039. https://doi.org/10.1155/2016/7103039
- Ye, X.W., Jin, T. and Yun, C.B. (2019), "A review on deep learning-based structural health monitoring of civil infrastructures", Smart Struct. Syst., Int. J., 24(5), 567-585. https://doi.org/10.12989/sss.2019.24.5.567
- Yoon, H., Elanwar, H., Choi, H., Golparvar-Fard, M. and Spencer, B.F. (2016), "Target-free approach for vision-based structural system identification using consumer-grade cameras", Struct. Control Health Monitor., 23(12), 1405-1416. https://doi.org/10.1002/stc.1850
- Yoon, H., Shin, J. and Spencer, B.F. (2018), "Structural displacement measurement using an unmanned aerial system", Comput.-Aided Civil Infrastruct. Eng., 33(3), 183-192. https://doi.org/10.1111/mice.12338
- Yu, S.S. and Zhang, J. (2020), "Fast bridge deflection monitoring through an improved feature tracing algorithm", Comput.-Aided Civil Infrastruct. Eng., 35(3), 292-302. https://doi.org/10.1111/mice.12499
- Zhang, X.C., Ye, P., Peng, S.Y., Liu, J., Gong, K. and Xiao, G. (2019a), "SiamFT: An RGB-infrared fusion tracking method via fully convolutional siamese networks", IEEE Access, 7, 122122-122133. https://doi.org/10.1109/ACCESS.2019.2936914
- Zhang, Y.Q., Miyamori, Y., Mikami, S. and Saito, T. (2019b), "Vibration-based structural state identification by a 1-dimensional convolutional neural network", Comput.-Aided Civil Infrastruct. Eng., 34(9), 822-839. https://doi.org/10.1111/mice.12447
- Zhang, X.C., Ye, P., Peng, S.Y., Liu, J. and Xiao, G. (2020), "DSiamMFT: An RGB-T fusion tracking method via dynamic Siamese networks using multi-layer feature fusion", Signal Process.: Image Commun., 84, 115756. https://doi.org/10.1016/j.image.2019.115756