DOI QR코드

DOI QR Code

Nonlinear analysis of concrete-filled single and double skin steel tubular tapered columns under axial loading

  • Received : 2020.01.20
  • Accepted : 2020.12.31
  • Published : 2021.04.25

Abstract

In this study, the structural response of concrete-filled single and double skin steel tubular (CFST and CFDST) composite tapered columns was investigated through the finite element method (FEM). In the development of the FEM model, the concentric axial loading condition and circular section were adopted. Experimental results available in the literature were used to verify the proposed FEM model. In addition, a parametric study was performed to visualize the effectiveness of tapered angle and material strengths on the ultimate capacity of CFST and CFDST tapered columns. To this aim, a total of 60 tapered column samples (including 30 CFST and 30 CFDST columns) were modeled by taking into consideration five tapered angles, two steel tube yield strengths, and three concrete cube compressive strengths. The verification of the FEM model revealed that the developed model has a reliable and trustable assessment capability. It was noticed that the tapered angle was the most crucial parameter, influencing significantly the ultimate axial strength and stiffness of both CFST and CFDST composite tapered columns. As well, it was overtly beheld from the study that CFST composite tapered column specimens had better ultimate axial strength values than CFDST composite tapered column specimens with the same sectional and material properties.

Keywords

References

  1. American Concrete Institute (ACI 318-08) (2008), Building code requirements for structural concrete, Am. Concr. Inst.
  2. Bazant, Z.P. and Becq-Giraudon, E. (2002), "Statistical prediction of fracture parameters of concrete and implications for choice of testing standard", Cem. Concr. Res., 32(4), 529-556. https://doi.org/10.1016/S0008-8846(01)00723-2
  3. Binici, B. (2005), "An analytical model for stress-strain behavior of confined concrete", Eng. Struct., 27(7), 1040-1051. https://doi.org/10.1016/j.engstruct.2005.03.002
  4. CEBFIP (1993), CEB-FIP model code 1990: design code.
  5. Chen, J., Liu, X., Liu, H. and Zeng, L. (2018), "Axial compression behavior of circular recycled concrete-filled steel tubular short columns reinforced by silica fume and steel fiber", Steel Compos. Struct., Int. J., 27(2), 193-200. https://doi.org/10.12989/scs.2018.27.2.193
  6. D'Aniello, M., Guneyisi, E.M., Landolfo, R. and Mermerdas, K. (2014), "Predictive models of the flexural overstrength factor for steel thin-walled circular hollow section beams", Thin-Wall. Struct., 94, 67-78. https://doi.org/10.1016/j.tws.2015.03.020
  7. D'Aniello, M., Guneyisi, E.M., Landolfo, R. and Mermerdas, K. (2015), "Analytical prediction of available rotation capacity of cold-formed rectangular and square hollow section beams", Thin-Wall. Struct., 77, 141-152. https://doi.org/10.1016/j.tws.2013.09.015
  8. Ding, F.X., Ding, X.Z., Liu, X.M., Wang, H.B., Yu, Z.W. and Fang, C.J. (2017), "Mechanical behavior of elliptical concrete-filled steel tubular stub columns under axial loading", Steel Compos. Struct., Int. J., 25(3), 375-388. https://doi.org/10.12989/scs.2017.25.3.375
  9. European Standard (2004), Eurocode 2: Design of concrete structures - Part 1-1: General rules and rules for buildings, Management.
  10. Guo, L., Zhang, S., Kim, W.J. and Ranzi, G. (2007), "Behavior of square hollow steel tubes and steel tubes filled with concrete", Thin-Wall. Struct., 45(12), 961-973. https://doi.org/10.1016/j.tws.2007.07.009
  11. Han, L.H., Tao, Z., Huang, H. and Zhao, X.L. (2004), "Concrete-filled double skin (SHS outer and CHS inner) steel tubular beam-columns", Thin-Wall. Struct., 42(9), 1329-1355. https://doi.org/10.1016/j.tws.2004.03.017
  12. Han, L.H., Yao, G.H. and Tao, Z. (2007), "Performance of concrete-filled thin-walled steel tubes under pure torsion", Thin-Wall. Struct., 45(1), 24-36. https://doi.org/10.1016/j.tws.2007.01.008
  13. Han, L.H., Ren, Q.X. and Li, W. (2010), "Tests on inclined, tapered and STS concrete-filled steel tubular (CFST) stub columns", J. Constr. Steel Res., 66, 1186-1195. https://doi.org/10.1016/j.jcsr.2010.03.014
  14. Han, L.H., Ren, Q.X. and Li, W. (2011), "Tests on stub stainless steel concrete carbon steel double-skin tubular (DST) columns", J. Constr. Steel Res., 67, 437-452. https://doi.org/10.1016/j.jcsr.2010.09.010
  15. Hassan, M.M., Mahmoud, A.A. and Serror, M.H. (2016), "Behavior of concrete-filled double skin steel tube beam columns", Steel Compos. Struct., Int. J., 22(5), 1141-1162. https://doi.org/10.12989/scs.2016.22.5.1141
  16. Hassanein, M.F. and Kharoob, O.F. (2014), "Analysis of circular concrete-filled double skin tubular slender columns with external stainless steel tubes", Thin-Wall. Struct., 79, 23-37. https://doi.org/10.1016/j.tws.2014.01.008
  17. Hassanein, M.F., Kharoob, O.F. and Liang, Q.Q. (2013), "Circular concrete-filled double skin tubular short columns with external stainless steel tubes under axial compression", Thin-Wall. Struct., 56, 252-263. https://doi.org/10.1016/j.tws.2013.08.017
  18. Hassanein, M.F., Patel, V.I., El Hadidy, A.M., Al Abadi, H. and Elchalakani, M. (2018), "Structural behavior and design of elliptical high-strength concrete-filled steel tubular short compression members", Eng. Struct., 173, 495-511. https://doi.org/10.1016/j.engstruct.2018.07.023
  19. Hu, H.T. and Schnobrich, W.C. (1989), "Constitutive modeling of concrete by using nonassociated plasticity", J. Mater. Civ. Eng., 1(4), 199-216. https://doi.org/10.1061/(ASCE)0899-1561(1989)1:4(199)
  20. Hu, H.T., Huang, C.S., Wu, M.H. and Wu, Y.M. (2003), "Nonlinear Analysis of Axially Loaded Concrete-Filled Tube Columns with Confinement Effect", J. Struct. Eng., 129(10), 1322-1329. https://doi.org/10.1061/(ASCE)0733-9445(2003)129:10(1322)
  21. Huang, H., Han, L.H., Tao, Z. and Zhao, X.L. (2010), "Analytical behaviour of concrete-filled double skin steel tubular (CFDST) stub columns", J. Constr. Steel Res., 66, 542-555. https://doi.org/10.1016/j.jcsr.2009.09.014
  22. Ipek, S. and Guneyisi, E. (2020), "Nonlinear finite element analysis of double skin composite columns subjected to axial loading", Arch. Civ. Mech. Eng., 20, 9. https://doi.org/10.1007/s43452-020-0012-x
  23. Ipek, S., Erdogan, A. and Guneyisi, E. (2021), "Compressive behavior of concrete-filled double skin steel tubular short columns with the elliptical hollow section", J. Build. Eng., 38, 102200. https://doi.org/10.1016/j.jobe.2021.102200
  24. Jamaluddin, N., Lam, D., Dai, X.H. and Ye, J. (2013), "An experimental study on elliptical concrete filled columns under axial compression", J. Constr. Steel Res., 87, 6-16. https://doi.org/10.1016/j.jcsr.2013.04.002
  25. Kim, J.K., Kwak, H.G. and Kwak, J.H. (2013), "Behavior of hybrid double skin concrete filled circular steel tube columns", Steel Compos. Struct., Int. J., 14(2), 191-204. https://doi.org/10.12989/scs.2013.14.2.191
  26. Kmiecik, P. and Kaminski, M. (2011), "Modelling of reinforced concrete structures and composite structures with concrete strength degradation taken into consideration", Arch. Civ. Mech. Eng., 11(3), 623-636. https://doi.org/10.1016/S1644-9665(12)60105-8
  27. Kulak, G.L. (1996), "Tubular members - large and small", Eng. Struct., 18(10), 745-751. https://doi.org/10.1016/0141-0296(96)00013-2
  28. Lam, D., Dai, X.H., Han, L.H., Ren, Q.X. and Li, W. (2012), "Behaviour of inclined, tapered and STS square CFST stub columns subjected to axial load", Thin-Wall. Struct., 54, 94-105. https://doi.org/10.1016/j.tws.2012.02.010
  29. Li, W., Ren, Q.X., Han, L.H. and Zhao, X.L. (2012), "Behaviour of tapered concrete-filled double skin steel tubular (CFDST) stub columns", Thin-Wall. Struct., 57, 37-48. https://doi.org/10.1016/j.tws.2012.03.019
  30. Li, W., Han, L.H., Ren, Q.X. and Zhao, X.L. (2013), "Behavior and calculation of tapered CFDST columns under eccentric compression", J. Constr. Steel Res., 83, 127-136. http://dx.doi.org/10.1016/j.jcsr.2013.01.010
  31. Lin, M.L. and Tsai, K.C. (2001), "Behaviour of double-skinned composite steel tubular columns subjected to combined axial flexural loads", Proceedings of the 1st International Conference on Steel and Composite Structures, Pusan, Korea.
  32. Mander, J.B., Priestley, M.J.N. and Park, R. (1988), "Theoretical Stress-Strain Model for Confined Concrete", J. Struct. Eng., 114(8), 1804-1826. https://doi.org/10.1061/(ASCE)0733-9445(1988)114:8(1804)
  33. Papanikolaou, V.K. and Kappos, A.J. (2007), "Confinement-sensitive plasticity constitutive model for concrete in triaxial compression", Int. J. Solids Struct., 44(21), 7021-7048. https://doi.org/10.1016/j.ijsolstr.2007.03.022
  34. Rabbat, B.G. and Russell, H.G. (1985), "Friction Coefficient of Steel on Concrete or Grout", J. Struct. Eng., 111(3), 505-515. https://doi.org/10.1061/(ASCE)0733-9445(1985)111:3(505)
  35. Ren, Q.X., Han, L.H., Hou, C. and Hua, Y.X. (2017), "Experimental behaviour of tapered CFST columns under combined compression and bending", J. Constr. Steel Res., 128, 39-52. https://doi.org/10.1016/j.jcsr.2016.08.005
  36. Richart, F., Brandtzaeg, A. and Brown, R.L. (1928), "A Study of the Failure of Concrete under Combined Compressive Stresses, Bulletin No. 26", Univ. Illinois Bull., Urbana, IL, USA.
  37. Sanez, L.P. (1964), "Discussion of 'Equation for the stress-strain curve of concrete' by Desayi and Krishman", J. Am. Concr. Inst., 61, 1229-1235.
  38. Schneider, B.S.P. and Member, A. (1998), "Axially loaded concrete-filled steel tubes", J. Struct. Eng., 124(10), 1125-1138. https://doi.org/10.1061/(ASCE)0733-9445(1998)124:10(1125)
  39. Seow, P.E.C. and Swaddiwudhipong, S. (2005), "Failure Surface for Concrete under Multiaxial Load-a Unified Approach", J. Mater. Civ. Eng., 17(2), 219-228. https://doi.org/10.1061/(ASCE)0899-1561(2005)17:2(219)
  40. Shekastehband, S., Mohammadbagheri, S. and Taromi, A. (2018), "Seismic behavior of stiffened concrete-filled double-skin tubular columns", Steel Compos. Struct., Int. J., 27(5), 577-598. https://doi.org/10.12989/scs.2018.27.5.577
  41. Tao, Z., Han, L.H. and Zhao, X.L. (2004), "Behaviour of concrete-filled double skin (CHS inner and CHS outer) steel tubular stub columns and beam-columns", J. Constr. Steel Res., 60(8), 1129-1158. https://doi.org/10.1016/j.jcsr.2003.11.008
  42. Tao, Z., Wang, X.Q. and Uy, B. (2013a), "Stress-Strain Curves of Structural and Reinforcing Steels after Exposure to Elevated Temperatures", J. Mater. Civ. Eng., 25(9), 1306-1316. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000676
  43. Tao, Z., Wang, Z.B. and Yu, Q. (2013b), "Finite element modelling of concrete-filled steel stub columns under axial compression", J. Constr. Steel Res., 89, 121-131. https://doi.org/10.1016/j.jcsr.2013.07.001
  44. Tomii, M., Yoshimura, K. and Morishita, Y. (1977), "Experimental Studies on Concrete-Filled Steel Tubular Stub Columns Under Concentric Loading", International Colloquium on Stability of Structures Under Static and Dynamic Loads, Washington, D.C., USA.
  45. Tomlinson, M.J., Tomlinson, A., Chapman, M.L., Jefferson, A.D. and Wright, H.D. (1989), "Shell composite construction for shallow draft immersed tube tunnels", Proceedings of ICE International Conference on Immersed Tube Tunnel Techniques.
  46. Uenaka, K., Kitoh, H. and Sonoda, K. (2010), "Concrete filled double skin circular stub columns under compression", Thin-Wall. Struct., 48(1), 19-24. https://doi.org/10.1016/j.tws.2009.08.001
  47. User, A.S. (2014), "Abaqus 6.14", Dassault Systemes Simulia Corp., Provid. RI, USA.
  48. Wei, S., Mau, S.T., Vipulanandan, C. and Mantrala, S.K. (1995), "Performance of New Sandwich Tube under Axial Loading: Experiment", J. Struct. Eng., 121(12), 1806-1814. https://doi.org/10.1061/(ASCE)0733-9445(1995)121:12(1806)
  49. William, K. and Warnke, E. (1975), "Constitutive model for the triaxial behavior of concrete", Proceedings of International Association for Bridge and Structural Engineering 19, Bergamo, Italy.
  50. Wright, H.D., Oduyemi, T.O.S. and Evans, H.R. (1991a), "The design of double skin composite elements", J. Constr. Steel Res., 19, 111-132. https://doi.org/10.1016/0143-974X(91)90037-2
  51. Wright, H.D., Oduyemi, T.O.S. and Evans, H.R. (1991b), "The experimental behaviour of double skin composite elements", J. Constr. Steel Res., 19, 91-110. https://doi.org/10.1016/0143-974X(91)90036-Z
  52. Xiong, D.X. and Zha, X.X. (2007), "A numerical investigation on the behaviour of concrete-filled steel tubular columns under initial stresses", J. Constr. Steel Res., 63(5), 599-611. https://doi.org/10.1016/j.jcsr.2006.07.002
  53. Yang, H., Lam, D. and Gardner, L. (2008), "Testing and analysis of concrete-filled elliptical hollow sections", Eng. Struct., 30, 3771-3781. https://doi.org/10.1016/j.engstruct.2008.07.004
  54. Yu, T., Teng, J.G., Wong, Y.L. and Dong, S.L. (2010), "Finite element modeling of confined concrete-I: Drucker-Prager type plasticity model", Eng. Struct., 32(3), 665-679. https://doi.org/10.1016/j.engstruct.2009.11.014
  55. Zhang, Y., Fu, G.Y., Yu, C.J., Chen, B., Zhao, S.X. and Li, S.P. (2016), "Experimental behavior of circular fly ash-concrete-filled steel tubular stub columns", Steel Compos. Struct., Int. J., 22(4), 821-835. https://doi.org/10.12989/scs.2016.22.4.821
  56. Zhao, X.L. and Han, L.H. (2006), "Double skin composite construction", Prog. Struct. Eng. Mater., 8(3), 93-102. https://doi.org/10.1002/pse.216
  57. Zhao, X.L., Grzebieta, R. and Elchalakani, M. (2002a), "Tests of concrete-filled double skin CHS composite stub columns", Steel Compos. Struct., Int. J., 2(2), 129-142. https://doi.org/10.12989/scs.2002.2.2.129
  58. Zhao, X.L., Grzebieta, R., Ukur, A. and Elchalakani, M. (2002b), "Tests of concrete-filled double skin (SHS outer and CHS inner) composite stub columns", Proceedings of the Third International Conference on Advances in Steel Structures, Hong Kong, China.
  59. Zhao, X.L., Tong, L.W. and Wang, X.Y. (2010), "CFDST stub columns subjected to large deformation axial loading", Eng. Struct., 32(3), 692-703. https://doi.org/10.1016/j.engstruct.2009.11.015