Acknowledgement
This work was supported by the National Natural Science Foundation of China (Grant Nos. 51839009, 51679017 and 41807251), the Natural Basic Research program 973 of China (Grant No. 2014CB046903), and the Fundamental Research Funds for the Central Universities (Grant No. 2042019kf0037).
References
- Ali, M.M. Narakathu, B.B., Emamian, S., Chlaihawi, A.A., Aljanabi, F., Maddipatla, D., Bazuin, B.J. and Atashbar, M.Z. (2016a), "Eutectic Ga-In Liquid Metal Based Flexible Capacitive Pressure Sensor", Proceedings of the 15th IEEE Sensors Conference, Orlando, FL, USA, October.
- Ali, S., Maddipatla, D., Narakathu, B.B., Chlaihawi, A.A., Emamian, S., Janabi, F., Bazuin, B.J. and Atashbar, M.Z. (2016b), "Flexible Capacitive Pressure Sensor Based on PDMS Substrate and Ga-In Liquid Metal", Proceedings of the 15th IEEE Sensors Conference, Orlando, FL, USA, October.
- Bakhoum, E.G. and Cheng, M.H.M. (2010a), "Capacitive pressure sensor with very large dynamic range", IEEE T. Compon. Pack. T., 33(1), 79-83. https://doi.org/10.1109/TCAPT.2009.2022949
- Bakhoum, E.G. and Cheng, M.H.M. (2010b), "Novel capacitive pressure sensor", J. Microelectromech. S., 19(3), 443-450. https://doi.org/10.1109/JMEMS.2010.2047632
- Barrias, A., Casas, J.R. and Villalba, S. (2016), "A review of distributed optical fiber sensors for civil engineering applications", Sensors, 16(5), 748. https://doi.org/10.3390/s16050748
- Berto, F., Lazzarin, P. and Marangon, C. (2014), "Fatigue strength of notched specimens made of 40CrMoV13.9 under multiaxial loading", Mater. Des., 54, 57-66. https://doi.org/10.1016/j.matdes.2013.08.013
- Chen, W., Gui, X., Liang, B., Yang, R., Zheng, Y., Zhao, C., Li, X., Zhu, H. and Tang, Z. (2017), "Structural Engineering for High Sensitivity, Ultrathin Pressure Sensors Based on Wrinkled Graphene and Anodic Aluminum Oxide Membrane", ACS Appl. Mater. Interfaces, 9(28), 24111-24117. https://doi.org/10.1021/acsami.7b05515
- Chossat, J.B., Park, Y.L., Wood, R.J. and Duchaine, V. (2013), "A Soft Strain Sensor Based on Ionic and Metal Liquids", IEEE Sensors J., 13(9), 3405-3414. https://doi.org/10.1109/JSEN.2013.2263797
- Chuang, C.H., Liou, Y.R. and Shieh, M.Y. (2012), "Flexible tactile sensor array for foot pressure mapping system in a biped robot", Smart Struct. Syst., Int. J., 9(6), 535-547. https://doi.org/10.12989/sss.2012.9.6.535
- Cui, Y., Gao, R.X., Yang, D. and Kazmer, D.O. (2007), "A bond graph approach to energy efficiency analysis of a self-powered wireless pressure sensor", Smart Struct. Syst., Int. J., 3(1), 1-22. https://doi.org/10.12989/sss.2007.3.1.001
- Gue, C.Y., Wilcock, M., Alhaddad, M.M., Elshafie, M., Soga, K. and Mair, R. (2014), "Monitoring the effects of tunneling under an existing tunnel-fibre optics", Proceedings of the 8th International Symposium on Geotechnical Aspects of Underground Construction in Soft Ground, Seoul, Korea, August. https://doi.org/10.17863/CAM.7210
- Haeri, H. and Marji, M.F. (2016), "Simulating the crack propagation and cracks coalescence underneath TBM disc cutters", Arab. J. Geosci., 9(2), 124. https://doi.org/10.1007/s12517-015-2137-4
- Haeri, H., Shahriar, K. and Marji, M.F. (2013), "Simulating the bluntness of TBM disc cutters in rocks using displacement discontinuity method", Proceedings of the 13th International Conference on Fracture 2013, Beijing, China, June.
- Haeri, H., Tavakoli, H., Shemirani A.B., Sarfarazi, V. and Farazmand, M. (2016), "Evaluating the use of mineral pumice in falling zones of internal pressure tunnels (Case study: Water transfer tunnel of Sardasht dam power plant)", J. Min. Sci., 52, 1060-1068. https://doi.org/10.1134/S106273911606160X
- Holtz, R.D., Kovacs, W.D. and Sheahan, T.C. (2010), An Introduction to Geotechnical Engineering, Pearson, NJ, USA.
- Jia, J., Huang, G.T., Deng, J.P. and Pan, K. (2019), "Skin-inspired flexible and high-sensitivity pressure sensors based on rGO films with continuous-gradient wrinkles", Nanoscale, 11, 4258-4266. https://doi.org/10.1039/C8NR08503J
- Kim, T., Kim, D.M., Lee, B.J. and Lee, J. (2019), "Soft and Deformable Sensors Based on Liquid Metals", Sensors, 19(9), 4250. https://doi.org/10.3390/s19194250
- Klar, A., Levenberg, E., Tur, M. and Zadok, A. (2016), "Sensing for smart infrastructure: Prospective engineering applications", Proceedings of International Conference on Smart Infrastructure and Construction, Robinson College, Cambridge, United Kingdom, pp. 289-295. https://doi.org/10.1680/tfitsi.61279.289
- Kou, M.M, Liu, X.R., Tang, S.D. and Wang, Y.T. (2019), "3-D X-ray computed tomography on failure characteristics of rock-like materials under coupled hydro-mechanical loading", Theor. Appl. Fract. Mec., 104, 102396. https://doi.org/10.1016/j.tafmec.2019.102396
- Kurtz, A.D., Ned, A.A., Goodman, S. and Epstein, A.H. (2003), "Latest ruggedized high temperature piezoresistive transducers", NASA Propulsion Measurement Sensor Development Workshop, Huntsville, Alabama, USA, May.
- Kurtz, A.D., Ned, A.A. and Epstein, A.H. (2004), "Improved ruggedized SOI transducers operational above 600℃", Kulite Semiconductor Products, Inc. Twenty-First Transducer Workshop, Lexington, Maryland, June.
- Li, C., Cordovilla, F. and Ocana, J.L. (2017), "The design and analysis of a novel structural piezoresistive pressure sensor for low pressure measurement", Microsys. Technol., 23, 5677-5687. https://doi.org/10.1007/s00542-017-3427-4
- Minardo, A., Catalano, E., Coscetta, A., Zeni, G., Zhang, L., Maio, C.D., Vassallo, R., Coviello, R., Macchia, G., Picarelli, L. and Zeni, L. (2018), "Distributed Fiber Optic Sensors for the Monitoring of a Tunnel Crossing a Landslide", Remote Sens., 10(8), 1291. https://doi.org/10.3390/rs10081291
- Nisanth, A., Suja, K.J. and Komaragiri, R. (2014a), "Performance analysis of a silicon piezoresistive pressure sensor based on diaphragm geometry and piezoresistor dimensions", Proceedings of 2014 IEEE International Conference on Circuits, Power and Computing Technologies (ICCPCT), Nagercoil, India. https://doi.org/10.1109/ICCPCT.2014.7055011
- Nisanth, A., Suja, K.J. and Komaragiri, R. (2014b), "Sensitivity enhancement of a silicon based MEMS pressure sensor by optimization of size and position of piezoresistor", Proceedings of 2014 International Conference on Electronics and Communication Systems (ICECS), Coimbatore, India. https://doi.org/10.1109/ECS.2014.6892720
- Oh, J.H., Woo, J.Y., Jo, S. and Han, C.S. (2019), "Pressure-conductive rubber sensor based on liquid-metal-PDMS composite", Sensor Actuat A-Phys., 299, 111610. https://doi.org/10.1016/j.sna.2019.111610
- Orhan, M.H., Dogan, C., Kocaba, H. and Tepehan, G. (2001), "Experimental strain analysis of the high pressure strain gauge pressure transducer and verification by using a finite element method", Meas. Sci. Technol., 12(3), 335-344. https://doi.org/10.1088/0957-0233/12/3/313
- Park, Y.L., Tepayotl-Ramirez, D., Wood, R.J. and Majidi, C. (2012), "Influence of cross-sectional geometry on the sensitivity and hysteresis of liquid-phase electronic pressure sensors", Appl. Phys. Lett., 101(19), 1097-1104. https://doi.org/10.1063/1.4767217
- Raiendra, A., Parmar, B.J., Sharma, A.K., Bhojraj, H., Nayak, M.M. and Rajanna, K. (2005), "Pressure sensor development using hard anodized aluminum diaphragm and sputtered Pt-W thin film strain sensors", The 13th International Conference on Solid-State Sensors, Actuators and Microsystems, Seoul, South Korea, Jun. https://doi.org/10.1109/SENSOR.2005.1497327
- Ryu, D., Loh, K.J., Ireland, R., Karimzada, M., Yaghmaie, F. and Gusman, A.M. (2011), "In situ reduction of gold nanoparticles in PDMS matrices and applications for large strain sensing", Smart Struct. Syst., Int. J., 8(5), 471-486. https://doi.org/10.12989/sss.2011.8.5.471
- Sarfarazi, V., Haeri, H., Shemirani A.B., Hedayat, A. and Hosseini, S.S. (2017), "Investigation of ratio of TBM disc spacing to penetration depth in rocks with different tensile strengths using PFC2D", Comput. Concrete, Int. J., 20(4), 429-437. https://doi.org/10.12989/cac.2017.20.4.429
- Sarfarazi, V., Haeri, H. and Safavi, S. (2019), "Interaction between two neighboring tunnel using PFC2D", Struct. Eng. Mech., Int. J., 71(1), 77-87. https://doi.org/10.12989/sem.2019.71.1.077
- Signore, M.A., Pascali, C.D., Rescio, G., Taurino, A., Dario, P., Iacovacci, V., Siciliano, P., Martucci, C., Melissano, E., Quaranta, F. and Francioso, L. (2018), "Fabrication and characterization of AlN-based flexible piezoelectric pressure sensor integrated into an artificial pancreas", Proceedings of the Eurosensors 2018 Conference, Graz, Austria, 2(13), 1037. https://doi.org/10.3390/proceedings2131037
- Soga, K. and Luo, L.Q. (2018), "Distributed fiber optics sensors for civil engineering infrastructure sensing", J. Struct. Integr. Maint., 3(1), 1-21. https://doi.org/10.1080/24705314.2018.1426138
- Stuchebnikov, V.M. (1991), "SOS strain gauge sensors for force and pressure transducers Sensor", Actuat. A-Phys., 28(3), 207-213. https://doi.org/10.1016/0924-4247(91)85009-D
- Tian, B., Zhao, Y.L., Niu, Z. and Jiang, Z.D. (2014), "Micropressure sensor dynamic performance analysis", Sensor Rev., 34(4), 367-373. https://doi.org/10.1108/SR-11-2013-748
- Vorathin, E., Hafizi, Z.M., Ismail, N. and Loman, M. (2020), "Review of high sensitivity fibre-optic pressure sensors for low pressure sensing", Opt. Laser Technol., 121, 105841. https://doi.org/10.1016/j.optlastec.2019.105841
- Wang, X., Gu, Y., Xiong, Z., Cui, Z. and Zhang, T. (2014), "Silk-molded flexible, ultrasensitive, and highly stable electronic skin for monitoring human physiological signals", Adv. Mater., 26(9), 1336-1342. https://doi.org/10.1002/adma.201304248
- Wang, X., Li, H.X., Wang, J. and Wu, A.J. (2019), "A novel fiber-optic pressure sensor device for measuring variceal pressure", Exp. Ther. Med., 18(6), 4413-4419. https://doi.org/10.3892/etm.2019.8071
- Xu, X.M., Soga, K., Nawaz, S., Moss, N., Bowers, K. and Gajia, M. (2015), "Performance monitoring of timber structures in underground construction using wireless SmartPlank", Smart Struct. Syst., Int. J., 15(3), 769-785. https://doi.org/10.12989/sss.2015.15.3.769
- Yan, J.W., Zhou, J.C., Lu, S.Q. and Tian, L. (2005), "Development and investigation trends of alloy thin film piezoresistive sensor", Mater. Rev., 19(12), 31-34. https://doi.org/10.3321/j.issn:1005-023X.2005.12.009
- Yu, H.Y. and Huang, J.Q. (2015), "Design and Application of a High Sensitivity Piezoresistive Pressure Sensor for Low Pressure Conditions", Sensors, 15(9), 22692-22704. https://doi.org/10.3390/s150922692
- Yu, H.Y., Qin, M. and Huang, J.Q. (2013), "A piezoresistive pressure sensor with improved sensitivity in low pressure condition", Proceedings of the 12th IEEE Sensors Conference, Baltimore, MD, USA, November. https://doi.org/10.1109/ICSENS.2013.6688390
- Zhang, S.R., Wen, B. and Cui, G.H. (2001), "A kind of SOS high temperature pressure transducer with double membrane", Journal of Natural Science of Heilongjiang University, 18(4), 56-58. http://dx.chinadoi.cn/10.3969/j.issn.1001-7011.2001.04.013
- Zhang, Y., Hu, Y.G., Zhu, P.L., Han, F., Zhu, Y., Sun, R. and Wong, C.P. (2017), "Flexible and Highly Sensitive Pressure Sensor Based on Microdome-Patterned PDMS Forming with Assistance of Colloid Self-Assembly and Replica Technique for Wearable Electronics", ACS Appl. Mater. Interfaces, 9(41), 35968-35976. https://doi.org/10.1021/acsami.7b09617
- Zhang, X.Y., Hu, Y.G., Gu, H., Zhu, P., Jiang, W.L., Zhang, G., Sun, R. and Wong, C.P. (2019), "A Highly Sensitive and Cost-Eective Flexible Pressure Sensor with Micropillar Arrays Fabricated by Novel Metal-Assisted Chemical Etching for Wearable Electronics", Adv. Mater. Technol., 4(9), 1900367. https://doi.org/10.1002/admt.201900367
- Zhao, Y.L., Zhao, L.B. and Jiang, Z.D. (2006), "High temperature and frequency pressure sensor based on silicon-on-insulator layers", Meas. Sci. Technol., 17(3), 519-523. https://doi.org/10.1088/0957-0233/17/3/S11
- Zhao, L.B., Guo, X., Meng, X.W., Hebibul, R., Zhao, Y.L., Wang, J.Z. and Jiang, Z.D. (2013), "An ultra-high pressure sensor with cylinder structure", J. Mech. Sci. Technol., 27(8), 2383-2389. https://doi.org/10.1007/s12206-013-0623-8
- Zhou, X.P., Bi, J. and Qian, Q.H. (2015), "Numerical simulation of crack growth and coalescence in rock-like materials containing multiple pre-existing flaws", Rock Mech. Rock Eng., 48, 1097-1114. https://doi.org/10.1007/s00603-014-0627-4
- Zhou, X.P., Deng, R.S. and Zhu, J.Y. (2018), "Three-layer-stacked pressure sensor with a liquid metal-embedded elastomer", J. Micromech. Microeng., 28(8), 085020. https://doi.org/10.1088/1361-6439/aac13c
- Zhou, X.P., He, Y. and Zeng, J. (2019), "Liquid metal antenna-based pressure sensor", Smart Mater. Struct., 28(2), 025019. https://doi.org/10.1088/1361-665X/aaf842.