References
- Abbas, I.A. (2006), "Natural frequencies of a poroelastic hollow cylinder", Acta Mecc., 186(1-4), 229-237. https://doi.org/10.1007/s00707-006-0314-y
- Abbas, I.A. (2014), "Nonlinear transient thermal stress analysis of thick-walled FGM cylinder with temperature-dependent material properties", Mecc., 49(7), 1697-1708. https://doi.org/10.1007/s11012-014-9948-3
- Abbas, I.A. and Abo-Dahab, S.M. (2014), "On the numerical solution of thermal shock problem for generalized magneto-thermoelasticity for an infinitely long annular cylinder with variable thermal conductivity", J. Comput. Theor. Nanosci., 11(3), 607-618. https://doi.org/10.1166/jctn.2014.3402
- Abbas, I.A. and Kumar, R. (2016), "2D deformation in initially stressed thermoelastic half-space with voids", Steel Compos. Struct., Int. J., 20(5), 1103-1117. https://doi.org/10.12989/scs.2016.20.5.1103
- Abbas, I.A. and Marin, M. (2017), "Analytical solution of thermoelastic interaction in a half-space by pulsed laser heating", Phys. E., 87(3), 254-260. https://doi.org/10.1016/j.physe.2016.10.048
- Adolfsson, K., Enelund, M. and Olsson, P. (2005), "On the fractional order model of visco-elasticity", Mech. Time-Depend. Mat., 9(1), 15-34. https://doi.org/10.1007/s11043-005-3442-1
- Alzahrani, F.S. and Abbas, I.A. (2016), "The effect of magnetic field on a thermoelastic fiber-reinforced material under GN-III theory", Steel Compos. Struct., Int. J., 22(2), 369-386. https://doi.org/10.12989/scs.2016.21.4.791
- Alzahrani, F.S. and Abbas, I.A. (2018), "Generalized photo-thermo-elastic interaction in a semiconductor plate with tworelaxation times", Thin-Wall. Struct., 129, 342-348. https://doi.org/10.1016/j.tws.2018.04.011
- Bagley, R.L. and Torvik, P.J. (1983), "A theoretical basis for the application of fractional calculus to viscoelasticity", J. Rheol., 27(3), 201-210. https://doi.org/10.1122/1.549724
- Biot, M.A. (1956), "Thermoelasticity and irreversible thermodynamics", J. Appl. Mech. Tech. Phys., 27(3), 240-253. https://doi.org/10.1063/1.1722351
- Caputo, M. (1974), "Vibrations on an infinite viscoelastic layer with a dissipative memory", J. Acous. Soc. Am., 56(3), 897-904. https://doi.org/10.1121/1.1903344
- Caputo, M. and Mainardi, F. (1971), "A new dissipation model based on memory mechanism", Pure Appli. Geophys., 91, 134-147. https://doi.org/10.1007/BF00879562
- Cattaneo, C. (1958), "Sur une forme de l'equation de la Chaleur eliminant le paradoxe d'une propagation instantaneee", C.R. Acad. Sci. Paris, 247(3), 431-433.
- Chandrasekharaiah, D.S. (1998), "Hyperbolic thermoelasticity: a review of recent literature", Appl. Mech. Rev., 51(12), 705-729. https://doi.org/10.1115/1.3098984
- Ezzat, M.A. (2001), "Free convection effects on perfectly conducting fluid", Int. J. Eng. Sci., 39(7), 799-819. https://doi.org/10.1016/S0020-7225(00)00059-8
- Ezzat, M.A. (2006), "The relaxation effects of the volume properties of electrically conducting viscoelastic material", J. Mater. Sci. Eng. B., 130(1-3), 11-23. https://doi.org/10.1016/j.mseb.2006.01.020
- Ezzat, M.A. and El-Bary, A.A. (2012), "MHD free convection flow with fractional heat conduction law", MHD, 48(4), 587-606. https://doi.org/10.22364/mhd
- Ezzat, M.A. and El-Bary, A.A. (2016), "Modeling of fractional magneto-thermoelasticity for a perfect conducting materials", Smart Struct. Syst., Int. J., 18(4), 707-731. https://doi.org/10.12989/sss.2016.18.4.707
- Ezzat, M.A., Othman, M.I. and El-Karamany, A.S. (2001), "State space approach to generalized thermo-viscoelasticity with two relaxation times", Int. J. Eng. Sci., 40(3), 283-302. https://doi.org/10.1016/S0020-7225(01)00045-3
- Ezzat, M.A., Alsowayan, N.S., Al-Muhiameed, Z.I.A. and Ezzat, S.M. (2014), "Fractional modelling of Pennes' bioheat transfer equation", Heat Mass Trans., 50(7), 907-914. https://doi.org/10.1007/s00231-014-1300-x
- Fujita, Y. (1990), "Integrodifferential equation which interpolates the heat equation and wave equation (I)", Osaka J. Math., 27(2), 309-321. https://doi.org/10.18910/4060
- Gordon, J.P., Leite, R.C.C., Moore, R., Porto, S.P.S. and Whinnery, J.R. (1965), "Long-transient effects in lasers with inserted liquid samples", J. Appl. Phys., 36(1), 3-12. https://doi.org/10.1063/1.1713919
- Gross, B. (1953), Mathematical Structure of the Theories of Viscoelasticity, Hemann, Paris, France.
- Gurtin, M.E. and Sternberg, E. (1962), "On the linear theory of viscoelasticity", Arch. Rat. Mech. Anal., 11(1), 182-191. https://doi.org/10.1007/BF00253942
- Hobiny, A. and Abbas, I.A. (2018), "Analytical solutions of photo-thermo-elastic waves in a non-homogenous semiconducting material", Res. Phys., 10, 385-390. https://doi.org/10.1016/j.rinp.2018.06.035
- Honig, G. and Hirdes, U. (1984), "A method for the numerical inversion of the Laplace transform", J. Compos. Appl. Math., 10(1), 113-132. https://doi.org/10.1016/0377-0427(84)90075-X
- Ignaczak, J. (1989), Generalized Thermoelasticity and Its Applications. (Ed., Hetnarski, R.B.), Thermal Stresses III, Elsevier, New York, USA.
- Ilioushin, A.A. (1968), "The approximation method of calculating the constructors by linear thermal viscoelastic theory", Mekhanika. Polimerov, Riga, 2, 168-178.
- Ilioushin, A.A. and Pobedria, B.E. (1970), Mathematical Theory of Thermal Viscoelasticity, Nauka, Moscow, Russia.
- Kimmich, R. (2002), "Strange kinetics, porous media, and NMR", Chem. Phys., 284(1-2), 243-285. https://doi.org/10.1016/S0301-0104(02)00552-9
- Kiriyakova, V. (1994), "Generalized fractional calculus and applications", In: Pitman Research Notes in Mathematics Series, Volume 301, Longman-Wiley, New York, USA.
- Kumar, R. and Abbas, I.A. (2013), "Deformation due to thermal source in micropolar thermoelastic media with thermal and conductive temperatures", J. Comput. Theor. Nanosci., 10(9), 2241-2247. https://doi.org/10.1166/jctn.2013.3193
- Kumar, R. and Devi, S. (2017), "Thermoelastic beam in modified couple stress thermoelasticity induced by laser pulse", Comput. Concrete, 19(6), 701-709. https://doi.org/10.12989/cac.2017.19.6.701
- Kumar, R., Sharma, N. and Lata, P. (2016a), "Thermomechanical interactions in a transversely isotropic magnetothermoelastic with and without energy dissipation with combined effects of rotation, vacuum and two temperatures", Appl. Math. Model., 40(13-14), 6560-6575. https://doi.org/10.1016/j.apm.2016.01.061
- Kumar, R., Sharma, N. and Lata, P. (2016b), "Effects of Hall current in a transversely isotropic magnetothermoelastic two temperature medium with rotation and with and without energy dissipation due to normal force", Struct. Eng. Mech., Int. J., 57(1), 91-103. https://doi.org/10.12989/sem.2016.57.1.091
- Kumar, R., Sharma, N. and Lata, P. (2018), "Effects of Hall current and two temperatures in transversely isotropic magnetothermoelastic with and without energy dissipation due to Ramp type heat", Mech. Adv. Mater. Struct., 24(8), 625-635. https://doi.org/10.1080/15376494.2016.1196769
- Kreuzer, L.B. (1971), "Ultralow gas concentration infrared absorption spectroscopy", J. Appl. Phys., 42(7), 2934-2943. https://doi.org/10.1063/1.1660651
- Lata, P. (2018), "Effect of energy dissipation on plane waves in sandwiched layered thermoelastic medium", Steel Compos. Struct., Int. J., 27(4), 439-451. https://doi.org/10.12989/scs.2018.27.4.439
- Lata, P., Kumar, R. and Sharma, N. (2016), "Plane waves in an anisotropic thermoelastic", Steel Compos. Struct., Int. J., 22(3), 567-587. https://doi.org/10.12989/scs.2016.22.3.567
- Lord, H. and Shulman, Y. (1967), "A generalized dynamical theory of thermoelasticity", J. Mech. Phys. Solids, 15(5), 299-309. https://doi.org/10.1016/0022-5096(67)90024-5
- Lotfy, K., Kumar, R., Hassan, W. and Gabr, M. (2018), "Thermomagnetic effect with microtemperature in a semiconducting photothermal excitation medium", Appl. Math. Mech., 39(5),783-796. https://doi.org/10.1007/s10483-018-2339-9
- Mainardi, F. and Gorenflo, R. (2000), "On Mittag-Lettler-type function in fractional evolution processes", J. Comput. Appl. Math., 118(1-2), 283-299. https://doi.org/10.1016/S0377-0427(00)00294-6
- Itu, C., Ochsner, A., Vlase, S. and Marin, M.I. (2019), "Improved rigidity of composite circular plates through radial ribs", Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 233(8), 1585-1593. https://doi.org/10.1177/1464420718768049
- Meyers, M.A. and Chawla, K.K. (1999), Mechanical Behavior of Materials. Prentice-Hall, NJ, USA, Volume 98, pp. 103.
- Mukhopadhyay, S. and Kumar, R. (2009), "Thermoelastic interactions on two-temperature generalized thermoelasticity in an infinite medium with a cylindrical cavity", J. Therm. Stress., 32(4), 341-360. https://doi.org/10.1080/01495730802637183
- Opsal, J. and Rosencwaig, A. (1985), "Thermal and plasma wave depth profiling in silicon", Appl. Phys. Lett., 47(5), 498-500. https://doi.org/10.1063/1.96105
- Othman, M.I., Fekry, M. and Marin, M. (2020), "Plane waves in generalized magneto-thermo-viscoelastic medium with voids under the effect of initial stress and laser pulse heating", Struct. Eng. Mech., Int. J., 73(6), 621-629. https://doi.org/10.12989/sem.2020.73.6.621
- Podlubny, I. (1999), Fractional Differential Equations, Academic: New York, USA.
- Povstenko, Y.Z. (2005), "Fractional heat conduction equation and associated thermal stress", J. Therm. Stress., 28(1), 83-102. https://doi.org/10.1080/014957390523741
- Press, W.H., Flannery, B.P., Teukolsky, S.A. and Vetterling, W.T. (1992), Numerical Recipes, (2nd ed.), Cambridge University Press, Cambridge, UK.
- Sharma, S. and Sharma, K. (2014), "Influence of heat sources and relaxation time on temperature distribution in tissues", Int. J. Appl. Mech. Eng., 19(2), 427-433. https://doi.org/10.2478/ijame-2014-0029
- Sharma, S., Sharma, K. and Bhargava, R. (2013), "Effect of viscosity on wave propagation in anisotropic thermoelastic with Green-Naghdi theory type-II and type-III", Mat. Phys. Mech., 16,144-158.
- Sherief, H.H. and Abd El-Latief, M. (2016), "Modeling of variable Lame's Modulii for a FGM generalized thermoelastic half space", Lat. Am. J. Solids Struct., 13(4), 715-730. https://doi.org/10.1590/1679-78252086
- Sherief, H.H. and Ezzat, M.A. (1994), "Solution of the generalized problem of thermoelasticity in the form of series of functions", J. Therm. Stress., 17(1), 75-95. https://doi.org/10.1080/01495739408946247
- Sherief, H.H. and Hussein, E.M. (2018), "Contour integration solution for a thermoelastic problem of a spherical cavity", Appl. Math. Comput., 320, 557-571. https://doi.org/10.1016/j.amc.2017.10.024
- Sherief, H.H., El-Said, A. and Abd El-Latief, A. (2010), "Fractional order theory of thermoelasticity", Int. J. Solid Struct., 47(2), 269-275. https://doi.org/10.1016/j.ijsolstr.2009.09.034
- Song, Y., Todorovic, D.M., Cretin, B. and Vairac, P. (2010), "Study on the generalized thermoelastic vibration of the optically excited semiconducting microcantilevers", Int. J. Solids Struct., 47(14-15), 1871-1875. https://doi.org/10.1016/j.ijsolstr.2010.03.020
- Song, Y., Bai, J. and Ren, Z. (2012), "Reflection of plane waves in a semiconducting medium under photothermal theory", Int. J. Thermophys., 33(7), 1270-1287. https://doi.org/10.1007/s10765-012-1239-4
- Sternberg, E. (1963), "On the analysis of thermal stresses in viscoelastic solids", Brown University Providence RI DIV of Applied Mathematics, 19, 213- 219.
- Tam, A.C. (1983), Ultrasensitive Laser Spectroscopy (Academic, New York), pp. 1-108.
- Tam, A.C. (1989), Photothermal Investigations in Solids and Fluids (Academic, Boston), pp. 1-33
- Todorovic, D. (2003), "Plasma, thermal, and elastic waves in semiconductors", Rev. Sci. Instrum, 74(1), 582-585. https://doi.org/10.1063/1.1523133
- Youssef, H. (2010), "Theory of fractional order generalized thermoelasticity", J. Heat Transf., 132(1), 1-7. https://doi.org/10.1115/1.4000705
- Yu, Y-J., Tian, X-G. and Tian, J-L. (2013), "Fractional order generalized electro-magnetothermo-elasticity", Eur. J. Mech., A/Solids, 42,188-202. https://doi.org/10.1016/j.euromechsol.2013.05.006
- Yu, Y-J., Hu, W. and Tian, X-G. (2014), "A novel generalized thermoelasticity model based on memory-dependent derivative", Int. J. Eng. Sci., 81, 123-134. https://doi.org/10.1016/j.ijengsci.2014.04.014.