Acknowledgement
This work was supported by the Istanbul Technical University Scientific Research Project (ITU-BAP). Project No: MGA-2018-41393 and by the Akdeniz University Scientific Research Project (AU-BAP) Project No: FBA-2018-2877.
References
- AASHTO (2014), AASHTO LRFD bridge design specifications, Transportation (Amst), American Association of State Highway and Transportation Officials, Inc.: Washington, D.C., USA.
- AASHTO (2017), AASHTO LRFD Bridge Design Specifications, Washington, D.C., USA.
- Alipour, A., Shafei, B. and Shinozuka, M. (2010), "Evaluation of uncertainties associated with design of highway bridges considering the effects of scouring and earthquake", Proceedings of Structures Congress, ASCE, Orlando, FL, USA, pp. 288-297.
- ASCE (2016), ASCE/SEI 7-16, Minimum design loads and associated criteria for buildings and other structures, American Society of Civil Engineers, Reston, VA, USA. https://doi.org/10.1061/9780784412916
- ASCE (2017), ASCE/SEI 41-17, Seismic evaluation and retrofit of existing buildings, American Society of Civil Engineers, Reston, VA, USA, 20191-4382.
- Avsar, O., Atak, B. and Caner, A. (2017), "In-depth investigation of seismic vulnerability of an aging river bridge exposed to scour", J. Perform. Constr. Facil., 31(5). https://doi.org/10.1061/(ASCE)CF.1943-5509.0001036
- Banerjee, S. and Prasad, G.G. (2013), "Seismic risk assessment of reinforced concrete bridges in flood-prone regions", Struct. Infrastruct. Eng., 9(9), 952-968. https://doi.org/10.1080/15732479.2011.649292
- Cali, M. and Ambu, R. (2018), "Advanced 3D photogrammetric surface reconstruction of extensive objects by UAV camera image acquisition", Sensors, 18(9), 2815. https://doi.org/10.3390/s18092815
- Castillo, C., Perez, R., James, M.R., Quinton, J.N., Taguas, E.V. and Gomez, J.A. (2012), "Comparing the accuracy of several field methods for measuring gully erosion", Soil Sci. Soc. Am. J., 76(4), 1319-1332. https://doi.org/10.2136/sssaj2011.0390
- Chen, S.Y., Laefer, D.F., Mangina, E., Zolanvari, S.M.I. and Byrne, J. (2019), "UAV bridge inspection through evaluated 3d reconstructions", J. Bridge Eng., 24(4). https://doi.org/10.1061/(ASCE)BE.1943-5592.0001343
- Coveney, S. and Roberts, K. (2017), "Lightweight UAV digital elevation models and orthoimagery for environmental applications: data accuracy evaluation and potential for river flood risk modelling", Int. J. Remote Sensing, 38(8-10), 3159-3180. https://doi.org/10.1080/01431161.2017.1292074
- Czech, W., Radecki-Pawlik, A., Wyzga, B. and Hajdukiewicz, H. (2016), "Modelling the flooding capacity of a Polish Carpathian river: A comparison of constrained and free channel conditions", Geom., 272, 32-42. https://doi.org/10.1016/j.geomorph.2015.09.025
- Deco, A. and Frangopol, D.M. (2011), "Risk assessment of highway bridges under multiple hazards", J. Risk Res., 14(9), 1057-1089. https://doi.org/10.1080/13669877.2011.571789
- Dorafshan, S. and Maguire, M. (2018), "Bridge inspection: human performance, unmanned aerial systems and automation", J. Civil Struct. Health Monitor., 8(3), 443-476. https://doi.org/10.1007/s13349-018-0285-4
- Duque, L., Seo, J. and Wacker, J. (2018), "Bridge deterioration quantification protocol using UAV", J. Bridge Eng., 23(10). https://doi.org/10.1061/(ASCE)BE.1943-5592.0001289
- Ellenberg, A., Kontsos, A., Moon, F. and Bartoli, I. (2016), "Bridge deck delamination identification from unmanned aerial vehicle infrared imagery", Automat. Constr., 72, 155-165. https://doi.org/10.1016/j.autcon.2016.08.024
- Escobar-Wolf, R., Oommen, T., Brooks, C.N., Dobson, R.J. and Ahlborn, T.M. (2018), "Unmanned Aerial Vehicle (UAV)-based assessment of concrete bridge deck delamination using thermal and visible camera sensors: a preliminary analysis", Res. Nondestruct. Eval., 29(4), 183-198. https://doi.org/10.1080/09349847.2017.1304597
- FHWA (2009), Federal Highway Administration "HY-8 Software - Hydraulics Engineering" online access at; http://www.fhwa.dot.gov/engineering/hydraulics/software/hy8
- Fioklou, A. and Alipour, A. (2019), "Significance of non-uniform scour on the seismic performance of bridges", Struct. Infrastruct. Eng., 15(6), 822-836. https://doi.org/10.1080/15732479.2019.1584226
- Flener, C., Vaaja, M., Jaakkola, A., Krooks, A., Kaartinen, H., Kukko, A., Kasvi, E., Hyyppa, H., Hyyppa, J. and Alho, P. (2013), "Seamless mapping of river channels at high resolution using mobile lidar and UAV-photography", Remote Sensing, 5(12), 6382-6407. https://doi.org/10.3390/rs5126382
- Gehl, P. and D'Ayala, D. (2016), "Development of bayesian networks for the multi-hazard fragility assessment of bridge systems", Struct. Safety, 60, 37-46. https://doi.org/10.1016/j.strusafe.2016.01.006
- Gidaris, I., Padgett, J.E., Barbosa, A.R., Chen, S.R., Cox, D., Webb, B. and Cerato, A. (2017), "Multiple-hazard fragility and restoration models of highway bridges for regional risk and resilience assessment in the United States: state-of-the-art review", J. Struct. Eng., 143(3). https://doi.org/10.1061/(ASCE)ST.1943-541X.0001672
- Goncalves, P., Marafuz, I. and Gomes, A. (2015), "Flood hazard, Santa Cruz do Bispo Sector, Leca River, Portugal: a methodological contribution to improve land use planning", J. Maps, 11(5), 760-771. https://doi.org/10.1080/17445647.2014.974226
- Guo, X., Badroddin, M. and Chen, Z.Q. (2019), "Scour-dependent empirical fragility modelling of bridge structures under earthquakes", Adv. Struct. Eng., 22(6), 1384-1398. https://doi.org/10.1177/1369433218815433
- Hackl, J., Adey, B.T., Wozniak, M. and Schumperlin, O. (2018), "Use of unmanned aerial vehicle photogrammetry to obtain topographical information to improve bridge risk assessment", J. Infrastruct. Syst., 24(1). https://doi.org/10.1061/(ASCE)IS.1943-555X.0000393
- Hada, Y., Nakao, M., Yamada, M., Kobayashi, H., Sawasaki, N., Yokoji, K., Kanai, S., Tanaka, F., Date, H., Pathak, S., Yamashita, A., Yamada, M. and Sugawara, T. (2017), "Development of a bridge inspection support system using two-wheeled multicopter and 3d modeling technology", J. Dis. Res., 12(3), 593-606. https://doi.org/10.20965/jdr.2017.p0593
- Hemmelder, S., Marra, W., Markies, H. and De Jong, S.M. (2018), "Monitoring river morphology & bank erosion using UAV imagery - A case study of the river Buech, Hautes-Alpes, France", Int. J. Appl. Earth Observ. Geoinform., 73, 428-437. https://doi.org/10.1016/j.jag.2018.07.016
- Hoskere, V., Park, J.W., Yoon, H. and Spencer, B.F. (2019), "Vision-based modal survey of civil infrastructure using unmanned aerial vehicles", J. Struct. Eng., 145(7). https://doi.org/10.1061/(ASCE)ST.1943-541X.0002321
- Hu, X.Y., Wang, B.W. and Ji, H. (2013), "A wireless sensor network-based structural health monitoring system for highway bridges", Comput.-Aided Civil Infr. Eng., 28(3), 193-209. https://doi.org/10.1111/j.1467-8667.2012.00781.x
- Hung, C.C. and Yau, W.G. (2017), "Vulnerability evaluation of scoured bridges under floods", Eng. Struct., 132, 288-299. https://doi.org/10.1016/j.engstruct.2016.11.044
- Ikeda, T., Minamiyama, S., Yasui, S., Ohara, K., Ichikawa, A., Ashizawa, S., Okino, A., Oomichi, T. and Fukuda, T. (2019), "Stable camera position control of unmanned aerial vehicle with three-degree-of-freedom manipulator for visual test of bridge inspection", J. Field Robotics, 36(7), 1212-1221. https://doi.org/10.1002/rob.21899
- Izumida, A., Uchiyama, S. and Sugai, T. (2017), "Application of UAV-SfM photogrammetry and aerial lidar to a disastrous flood: repeated topographic measurement of a newly formed crevasse splay of the Kinu River, central Japan", Natural Hazards Earth Syst. Sci., 17(9), 1505-1519. https://doi.org/10.5194/nhess-17-1505-2017
- James, M.R. and Robson, S. (2012), "Straightforward reconstruction of 3D surfaces and topography with a camera: Accuracy and geoscience application", J. Geophys. Res.-Earth Surface, 117. https://doi.org/10.1029/2011JF002289
- Javernick, L., Brasington, J. and Caruso, B. (2014), "Modeling the topography of shallow braided rivers using Structure-from-Motion photogrammetry", Geomorphology, 213, 166-182. https://doi.org/10.1016/j.geomorph.2014.01.006
- Jung, H.J., Lee, J.H., Yoon, S. and Kim, I.H. (2019), "Bridge inspection and condition assessment using Unmanned Aerial Vehicles (UAVs): Major challenges and solutions from a practical perspective", Smart Struct. Syst., Int. J., 24(5), 669-681. https://doi.org/10.12989/sss.2019.24.5.669
- Khaloo, A., Lattanzi, D., Cunningham, K., Dell'Andrea, R. and Riley, M. (2018), "Unmanned aerial vehicle inspection of the Placer River Trail Bridge through image-based 3D modelling", Struct. Infrastruct. Eng., 14(1), 124-136. https://doi.org/10.1080/15732479.2017.1330891
- Kim, I.H., Jeon, H., Baek, S.C., Hong, W.H. and Jung, H.J. (2018), "Application of crack identification techniques for an aging concrete bridge inspection using an UAV", Sensors, 18(6), 1881. https://doi.org/10.3390/s18061881
- Kizilduman, H.S. (2016), "A Study on Seismic Behavior of Scour-Vulnerable Bridges", Civil Engineering, Middle East Technical University, Turkey.
- Kizilduman, H.S., Yanmaz, A.M. and Caner, A. (2018), "Stability of bridge piers subjected to a probable flood event followed by a probable seismic event", J. Perf. Constr. Facil., 32(1). https://doi.org/10.1061/(ASCE)CF.1943-5509.0001123
- Klinga, J.V. and Alipour, A. (2015), "Assessment of structural integrity of bridges under extreme scour conditions", Eng. Struct., 82, 55-71. https://doi.org/10.1016/j.engstruct.2014.07.021
- Lagasse P.F., Schall J.D. and Price, G.R. (1997), Instrumentation for Measuring Scour at Bridge Piers and Abutments, NCHRP Report no. 396, Transportation Research Board, Washington, D.C., USA.
- Langhammer, J. (2018), "UAV monitoring of stream restorations", Hydrology, 6(2), 29. https://doi.org/10.3390/hydrology6020029
- Lee, J.K., Kim, J.O. and Park, S.J. (2019), "A study on the UAV image-based efficiency improvement of bridge maintenance and inspection", J. Intel. Fuzzy Syst., 36(2), 967-983. https://doi.org/10.3233/JIFS-169873
- Lei, B., Wang, N., Xu, P.C. and Song, G.B. (2018), "New crack detection method for bridge inspection using UAV incorporating image processing", J. Aerosp. Eng., 31(5). https://doi.org/10.1061/(ASCE)AS.1943-5525.0000879
- Liao, K.W., Kung W.C. and Chen, J.W. (2018a), "Probabilistic safety evaluation of a river bridge substructure against floods", Proceedings of the Institution of Civil Engineers-Structures and Buildings, 171(7), 517-527. https://doi.org/10.1680/jstbu.16.00028
- Liao, K.W., Muto, Y. and Gitomarsono, J. (2018b), "Reliability analysis of river bridge against scours and earthquakes", J. Perform. Constr. Facil., 32(3).
- Liu, P., Chen, A.Y., Huang, Y.N., Han, J.Y., Lai, J.S., Kang, S.C., Wu, T.H., Wen, M.C. and Tsai, M.H. (2014), "A review of rotorcraft Unmanned Aerial Vehicle (UAV) developments and applications in civil engineering", Smart Struct. Syst., Int. J., 13(6), 1065-1094. https://doi.org/10.12989/sss.2014.13.6.1065
- McVay, M.C. and Niraula, L. (2004), "Development of modified T-Z curves for large diameter piles/drilled shafts in limestone for FBPier", Rep. No. 4910-4504-878-12, Nat. Tech. Inf. Serv., Springfield.
- Metni, N. and Hamel, T.A. (2007), "A UAV for bridge inspection: Visual servoing control law with orientation limits", Automat. Constr., 17(1), 3-10. https://doi.org/10.1016/j.autcon.2006.12.010
- Muthusamy, M., Casado, M.R., Salmoral, G., Irvine, T. and Leinster, P. (2019), "A RS based integrated approach to quantify the impact of fluvial and pluvial flooding in an urban catchment", Rem. Sens., 11(5).
- Niraula, L.D. (2004) "Development of Modified T-z Curves for Large Diameter Piles/Drilled Shafts in Limestone for FB Pier.", Master Thesis, University of Florida, USA.
- Omar, T. and Nehdi, M.L. (2017), "Remote sensing of concrete bridge decks using unmanned aerial vehicle infrared thermography", Automat. Constr., 83, 360-371. https://doi.org/10.1016/j.autcon.2017.06.024
- Ozcan, O. and Musaoglu, N. (2017), "Intercomparison of satellite precipitation with gauge data using point frequency analysis", Ipsi Bgd Transact. Internet Res., 13(2).
- Ozcan, O. and Ozcan, O. (2018), "Multi-hazard assessment of rc bridges using unmanned aerial vehicle-based measurements", Baltic J. Road Bridge Eng., 13(3), 192-208. https://doi.org/10.7250/bjrbe.2018-13.412
- Ozcan, O. and Ozcan, O. (2019), "Effect of hydrogeo-morphological changes in flood plain on bridge multi-hazard performance", Fresenius Environ. Bull., 28(2), 956-962.
- Pan, Y., Dong, Y.Q., Wang, D.L., Chen, A.R. and Ye, Z. (2019), "3-D reconstruction of structural surface model of heritage bridges using UAV-based photogrammetric point clouds", Remote Sensing, 11(10).
- Patel, D.P., Ramirez, J.A., Srivastava, P.K., Bray, M. and Han, D.W. (2017), "Assessment of flood inundation mapping of Surat city by coupled 1D/2D hydrodynamic modeling", Natural Hazards, 89(1), 93-130. https://doi.org/10.1007/s11069-017-2956-6
- PEER (2015), Pacific Earthquake Engineering Research Center - PEER. Ground motion database.
- Reese, L.C., Cox, W.R. and Koop, F.D. (1974), "Field testing and analysis of laterally loaded piles in sand", Proceedings of the VI Annual Offshore Technology Conference, Houston, TX, USA, 2(OTC 2080), pp, 473-485.
- Richardson, E.V., Harrison, L.J., Richardson, J.R. and Davis, S.R. (1993), Evaluating Scour at Bridges - HEC-18, FHWA Report, FHWA-IP-90-017, Washington, D.C., USA.
- Salaan, C.J.O., Okada, Y., Mizutani, S., Ishii, T., Koura, K., Ohno, K. and Tadokoro, S. (2018), "Close visual bridge inspection using a UAV with a passive rotating spherical shell", J. Field Robotics, 35(6), 850-867. https://doi.org/10.1002/rob.21781
- Sanchez-Cuevas, P.J., Ramon-Soria, P., Arrue, B., Ollero, A. and Heredia, G. (2019), "Robotic system for inspection by contact of bridge beams using UAVs", Sensors, 19(2), 305. https://doi.org/10.3390/s19020305
- SAP2000 v18 (2018), Integrated Finite Element Analysis and Design of Structures Software, Berkeley, CA, USA.
- Schumann, G.J.P., Muhlhausen, J. and Andreadis, K.M. (2019), "Rapid mapping of small-scale river-floodplain environments using UAV SfM supports classical theory", Remote Sensing, 11(8), 982. https://doi.org/10.3390/rs11080982
- Seo, J., Duque, L. and Wacker, J. (2018), "Drone-enabled bridge inspection methodology and application", Automat. Constr., 94, 112-126. https://doi.org/10.1016/j.autcon.2018.06.006
- SHWR (2018), Bogacay Project Evaluation Report, Antalya, Turkey, 2018, pp.112. [In Turkish]
- Skibniewski, M., Tserng, H.P., Ju, S.H., Feng, C.W., Lin, C.T., Han, J.Y., Weng, K.W. and Hsu, S.C. (2014), "Web-based real time bridge scour monitoring system for disaster management", Baltic J. Road Bridge Eng., 9(1), 17-25. https://doi.org/10.3846/bjrbe.2014.03
- Song, S.T., Wang, C.Y. and Huang, W.H. (2015), "Earthquake damage potential and critical scour depth of bridges exposed to flood and seismic hazards under lateral seismic loads", Earthq. Eng. Eng. Vib., 14(4), 579-594. https://doi.org/10.1007/s11803-015-0047-9
- TEC (2018), Turkey Building Earthquake Code, Ankara, Turkey.
- Villanueva, J.R.E., Martinez, L.I. and Montiel, J.I.P. (2019), "DEM generation from fixed-wing uav imaging and lidar-derived ground control points for flood estimations", Sensors, 19(14), 3205. https://doi.org/10.3390/s19143205
- Wang, S.C., Liu, K.Y., Chen, C.H. and Chang, K.C. (2015), "Experimental investigation on seismic behavior of scoured bridge pier with pile foundation", Earthq. Eng. Struct. Dyn., 44(6), 849-864. https://doi.org/10.1002/eqe.2489
- Wang, S.T. and Reese, L.C. (1993), "COM624P - Laterally loaded pile analysis program for the microcomputer", version 2.0, Federal Highway Administration Publication No. FHWA-SA-91-048.
- Wang, Z.H., Duenas-Osorio, L. and Padgett, J.E. (2014), "Influence of scour effects on the seismic response of reinforced concrete bridges", Eng. Struct., 76, 202-214. https://doi.org/10.1016/j.engstruct.2014.06.026
- Wardhana, K. and Hadipriono, F.C. (2003), "Analysis of recent bridge failures in the United States", J. Perform. Constr Facil., 17(3), 144-150. https://doi.org/10.1061/(ASCE)0887-3828(2003)17:3(144)
- Watanabe, Y. and Kawahara, Y. (2016), "UAV photogrammetry for monitoring changes in river topography and vegetation", Proceedings of the 12th International Conference on Hydroinformatics, Volume 154, pp. 317-325.
- Wilheit, T. (2003), The TRMM Measuring Concept, In Cloud Systems, Hurricanes, and the TRMM, Meteorological Monographs, American Meteorological Society, Boston, MA, USA.
- Yanmaz, A.M. and Caner, A. (2012), "Comments on the Failure of Caycuma Bridge", Turkish Association for Bridge and Structural Engineering, Ankara, Turkey. [In Turkish]
- Yilmaz, T., Banerjee, S. and Johnson, P.A. (2018), "Uncertainty in risk of highway bridges assessed for integrated seismic and flood hazards", Struct. Infrastruct. Eng., 14(9), 1182-1196. https://doi.org/10.1080/15732479.2017.1402065
- Zaky, A., Ozcan, O. and Avsar, O. (2020), "Seismic failure analysis of concrete bridges exposed to scour", Eng. Fail. Anal., 115, 104617. https://doi.org/10.1016/j.engfailanal.2020.104617
Cited by
- Debonding defect quantification method of building decoration layers via UAV-thermography and deep learning vol.28, pp.1, 2021, https://doi.org/10.12989/sss.2021.28.1.055