과제정보
The authors would like to thank the reviewers for their valuable comments and suggestions to improve the clarity of this work. Also, they would like to thank the Iranian Nanotechnology Development Committee for their financial support and the University of Kashan for supporting this work by Grant No. 682561/11.
참고문헌
- AkhavanAlavi, S.M., Mohammadimehr, M. and Edjtahed, S.H. (2019), "Active control of micro Reddy beam integrated with functionally graded nanocomposite sensor and actuator based on linear quadratic regulator method", Eur. J. Mech.-A/Solids 74, 449-461. https://doi.org/10.1016/j.euromechsol.2018.12.008
- Anitescu, C., Atroshchenko, E., Alajlan, N. and Rabczuk, T. (2019), "Artificial neural network methods for the solution of second order boundary value problems". Comput. Mater. Contin., 59(1), 345-359. https://doi.org/10.32604/cmc.2019.06641
- Ansari, R., Gholami, R. and Sahmani, S. (2011), "Free vibration analysis of size-dependent functionally graded microbeams based on the strain gradient Timoshenko beam theory", Compos. Struct., 94(1), 221-228. https://doi.org/10.1016/j.compstruct.2011.06.024
- Ansari, R., Gholami, R., Shojaei, M.F., Mohammadi, V. and Sahmani, S. (2013), "Size-dependent bending, buckling and free vibration of functionally graded Timoshenko micro beams based on the most general strain gradient theory", Compos. Struct., 100, 385-397. https://doi.org/10.1016/j.compstruct.2012.12.048
- Ansari, R., Shojaei, M.F., Mohammadi, V., Gholami, R. and Sadeghi, F. (2014), "Nonlinear forced vibration analysis of functionally graded carbon nanotube-reinforced composite Timoshenko beams", Compos. Struct., 113, 316-327. https://doi.org/10.1016/j.compstruct.2014.03.015
- Arani, A.G., Mobarakeh, M.R., Shams, S. and Mohammadimehr, M. (2012), "The effect of CNT volume fraction on the magnetothermo-electro-mechanical behavior of smart nanocomposite cylinder", J. Mech. Sci. Technol., 26(8), 2565-2572. https://doi.org/10.1007/s12206-012-0639-5
- Arani, A.G. and Amir, S. (2013), "Electro-thermal vibration of visco-elastically coupled BNNT systems conveying fluid embedded on elastic foundation via strain gradient theory", Physica B., 419, 1-6. https://doi.org/10.1016/j.physb.2013.03.010
- Ardestani, M.M., Zhang, L.W. and Liew, K.M. (2017), "Isogeometric analysis of the effect of CNT orientation on the static and vibration behaviors of CNT-reinforced skew composite plates", Comput. Method. Appl. Mech. Engin., 317, 341-379. https://doi.org/10.1016/j.cma.2016.12.009
- Areias, P., Rabczuk, T. and Msekh, M. (2016), "Phase-field analysis of finite-strain plates and shells including element subdivision", Comput. Method. Appl. Mech. Engin., 312, 322-350. https://doi.org/10.1016/j.cma.2016.01.020
- Banerjee, J.R. (2001), "Frequency equation and mode shape formulae for composite Timoshenko beam", Compos. Struct., 51(4), 381-388. https://doi.org/10.1016/S0263-8223(00)00153-7
- Barquero-Cabrero, J.D., Luevanos-Rojas, A., Lopez-Chavarria, S., Medina-Elizondo, M., Velazquez-Santillan, F. and Sandoval-Rivas, R. (2018), "Deflections and rotations in rectangular beams with straight haunches under uniformly distributed load considering the shear deformations", Smart. Struct. Syst., Int. J., 22(6), 689-697. https://doi.org/10.12989/sss.2018.22.6.689
- Beni, Y.T., Mehralian, F. and Razavi, H. (2015), "Free vibration analysis of size-dependent shear deformable functionally graded cylindrical shell on the basis of modified couple stress theory", Compos. Struct., 120, 65-78. https://doi.org/10.1016/j.compstruct.2014.09.065
- Canales, F.G. and Mantari, J.L. (2017), "Elasto-plastic vibrational analysis of tapered bars under uniform axial loading considering shear deformation and rotary inertia", Int. J. Lin. Mech., 95, 103-116. https://doi.org/10.1016/j.ijnonlinmec.2017.06.001
- Chau-Dinh, T., Zi, G., Lee, P., Rubczuk, T. and Song, J. (2012), "Phantom-node method for shell models with arbitrary cracks", Comput. Struct., 92-93, 242-256. https://doi.org/10.1016/j.compstruc.2011.10.021
- Chu, L., Dui, G. and Ju, C. (2018), "Flexoelectric effect on the bending and vibration responses of functionally graded piezoelectric nanobeams based on general modified strain gradient theory", Compos. Struct., 186, 39-49. https://doi.org/10.1016/j.compstruct.2017.10.083
- Domagalski, L. (2018), "Free and forced large amplitude vibrations of periodically inhomogeneous slender beams", Arch. Civil. Mech. Eng., 18(4), 1506-1519. https://doi.org/10.1016/j.acme.2018.06.005
- Farzampour, A., Eatherton, M.R., Mansouri, I. and Hu, J.W. (2019), "Effect of flexural and shear stresses simultaneously for optimized design of butterfly-shaped dampers: Computational study", Smart Struct. Syst., Int. J., 23(4), 329-335. http://doi.org/10.12989/sss.2019.23.4.329
- Furtak, K. and Rodacki, K. (2018), "Experimental investigation of load-bearing capacity of composite timber-glass I-beams", Arch. Cvil. Mech. Engin., 18(3), 956-964. https://doi.org/10.1016/j.acme.2018.02.002
- Ganesh, S., Kumar, K.S. and Mahato, P.K. (2016), "Free vibration analysis of delaminated composite plates using finite element method", Proce. Eng., 144, 1067-1075. https://doi.org/10.1016/j.proeng.2016.05.061
- Ghasemi, H., Park, H.S. and Rabczuk, T. (2017), "A level-set based IGA formulation for topology optimization of flexoelectric materials", Comput. Method. Appl. Mech. Engin., 313, 239-258. https://doi.org/10.1016/j.cma.2016.09.029
- Ghasemi, H., Park, H.S. and Rabczuk, T. (2018), "A multi-material level set-based topology optimization of flexoelectric composites", Comput. Method. Appl. Mech. Eng., 332, 47-62. https://doi.org/10.1016/j.cma.2017.12.005
- Hamdia, K.M., Ghasemi, H., Zhuang, X., Alajlan, N. and Rabczuk, T. (2018), "Sensitivity and uncertainty analysis for flexoelectric nanostructures", Comput. Method. Appl. Mech. Engin., 337, 95-109. https://doi.org/10.1016/j.cma.2018.03.016
- Hsu, Y.S. (2016), "Enriched finite element methods for Timoshenko beam free vibration analysis", Appl. Math. Model., 40(15-16), 7012-7033. https://doi.org/10.1016/j.apm.2016.02.042
- Guo, H., Zhuang, X. and Rabczuk, T. (2019), "A deep collocation method for the bending analysis of Kirchhoff plate". Comput. Mater. Contin., 59(2), 433-456. https://doi.org/10.32604/cmc.2019.06660
- Jelodari, I. and Nilseresht, A.H. (2018), "Effects of Lorentz force and induced electrical field on the thermal performance of a magnetic nanofluid-filled cubic cavity", J. Molec. Liq., 252, 296-310. https://doi.org/10.1016/j.molliq.2017.12.143.
- Kashani, B.K. and Sani, A.A. (2016), "Free vibration analysis of horizontal cylindrical shells including sloshing effect utilizing polar finite element", Europ. J. Mech. A/Solids., 58, 187-201. https://doi.org/10.1016/j.euromechsol.2016.02.002
- Ke, L.L. and Wang, Y.S. (2011), "Size effect on dynamic stability of functionally graded microbeams based on a modified couple stress theory", Compos. Struct., 93(2), 342-350. https://doi.org/10.1016/j.compstruct.2010.09.008
- Kutlu, A. and Omurtag, M.H. (2012), "Large deflection bending analysis of elliptic plates on orthotropic elastic foundation with mixed finite element method", Int. J. Mech. Sci., 65(1), 64-74. https://doi.org/10.1016/j.ijmecsci.2012.09.004
- Lam, D.C., Yang, F., Chong, A.C.M., Wang, J. and Tong, P. (2003), "Experiments and theory in strain gradient elasticity", J. Mech. Phys. Solid., 51(8), 1477-1508. https://doi.org/10.1016/S0022-5096(03)00053-X
- Lee, J. and Schultz, W.W. (2004), "Eigenvalue analysis of Timoshenko beams and axisymmetric Mindlin plates by the pseudospectral method", J. Sound. Vib., 269(3-5), 609-621. https://doi.org/10.1016/S0022-460X(03)00047-6
- Lei, J., He, Y., Zhang, B., Gan, Z. and Zeng, P. (2013a), "Bending and vibration of functionally graded sinusoidal microbeams based on the strain gradient elasticity theory", Int. J. Eng. Sci., 72, 36-52. https://doi.org/10.1016/j.ijengsci.2013.06.012
- Lei, Z.X., Liew, K.M. and Yu, J.L. (2013b), "Free vibration analysis of functionally graded carbon nanotube-reinforced composite plates using the element-free kp-Ritz method in thermal environment", Compos. Struct., 106, 128-138. https://doi.org/10.1016/j.compstruct.2013.06.003
- Lei, Z.X., Zhang, L.W. and Liew, K.M. (2015), "Elastodynamic analysis of carbon nanotube-reinforced functionally graded plates", Int. J. Mech. Sci., 99, 208-217. https://doi.org/10.1016/j.ijmecsci.2015.05.014
- Lenci, S., Clementi, F. and Rega, G. (2017), "Comparing Nonlinear Free Vibrations of Timoshenko Beams with Mechanical or geometric curvature definition", Defin. Proce. IUTAM., 20, 34-41. https://doi.org/10.1016/j.piutam.2017.03.006
- Ma, H.M., Gao, X.L. and Reddy, J.N. (2008), "A microstructure-dependent Timoshenko beam model based on a modified couple stress theory", J. Mech. Phys. Solid., 56(12), 3379-3391. https://doi.org/10.1016/j.jmps.2008.09.007
- Mirsalehi, M., Azhari, M. and Amoushahi, H. (2017), "Buckling and free vibration of the FGM thin micro-plate based on the modified strain gradient theory and the spline finite strip method", Europ. J. Mech. A/Solid., 61, 1-13. https://doi.org/10.1016/j.euromechsol.2016.08.008
- Mohammadimehr, M. and Mehrabi, M. (2017), "Stability and free vibration analysis of double-bonded micro composite sandwich cylindrical shells conveying fluid flow", Appl. Math. Model., 47, 685-709. https://doi.org/10.1016/j.apm.2017.03.054.
- Mohammadimehr, M. and Mehrabi, M. (2018), "Electro-thermomechanical vibration and stability analyses of double-bonded micro composite sandwich piezoelectric tubes conveying fluid flow", Appl. Math. Model., 60, 255-272. https://doi.org/10.1016/j.apm.2018.03.008
- Mohammadimehr, M., Salemi, M. and Navi, B.R. (2016a), "Bending, buckling, and free vibration analysis of MSGT microcomposite Reddy plate reinforced by FG-SWCNTs with temperature-dependent material properties under hydro-thermomechanical loadings using DQM", Compos. Struct., 138, 361-380. https://doi.org/10.1016/j.compstruct.2015.11.055
- Mohammadimehr, M., Mohammadimehr, M.A. and Dashti, P. (2016b), "Size-dependent effect on biaxial and shear nonlinear buckling analysis of nonlocal isotropic and orthotropic microplate based on surface stress and modified couple stress theories using differential quadrature method", Appl. Mathe. Mech., 37(4), 529-554. https://doi.org/10.1007/s10483-016-2045-9
- Mohammadimehr, M., Mehrabi, M., Hadizadeh, H. and Hadizadeh, H. (2018a), "Surface and size dependent effects on static, buckling, and vibration of micro composite beam under thermo-magnetic fields based on strain gradient theory", Steel Compos. Struct., Int. J., 26(4), 513-531. http://doi.org/10.12989/scs.2018.26.4.513
- Mohammadimehr, M., Nejad, E.S. and Mehrabi, M. (2018b), "Buckling and vibration analyses of MGSGT double-bonded micro composite sandwich SSDT plates reinforced by CNTs and BNNTs with isotropic foam & flexible transversely orthotropic cores", Struct. Eng. Mech., Int. J., 65(4), 491-504. http://doi.org/10.12989/sem.2018.65.4.491
- Mohammadimehr, M., Mohammadi-Dehabadi, A.A., Akhavan Alavi, S.M., Alambeigi, K., Bamdad, M., Yazdani, R. and Hanifehlou, S. (2018c), "Bending, buckling, and free vibration analyses of carbon nanotube reinforced composite beams and experimental tensile test to obtain the mechanical properties of nanocompositem", Steel Compos. Struct., Int. J., 29(3), 405-422. https://doi.org/12989/scs.2018.29.3.405 https://doi.org/10.12989/scs.2018.29.3.405
- Mohammadimehr, M., Afshari, H., Salemi, M., Torabi, K. and Mehrabi, M. (2019), "Free vibration and buckling analyses of functionally graded annular thin sector plate in-plane loads using GDQM", Struct. Eng. Mech., Int. J., 71(5), 525-544. http://doi.org/10.12989/.2019.71.5.525
- Mohammadimehr, M., Mehrabi, M. and Mousavinejad, F.S. (2020), "Magneto-mechanical vibration analysis of single-/three-layered micro-Timoshenko porous beam and graphene platelet as reinforcement based on modified strain gradient theory and differential quadrature method", J. Vib. Control. https://doi.org/10.1177%2F1077546320949083 https://doi.org/10.1177%2F1077546320949083
- Nanthakumar, S.S., Lahmer, T., Zhuang, X., Zi, G. and Rabczuk, T. (2016), "Detection of material interfaces using a regularized level set method in piezoelectric structures", Inverse Prob. Sci. Eng., 24(1), 153-176. https://doi.org/10.1080/17415977.2015.1017485
- Nguyen-Thanh, N., Valizadeh, N., Nguyen, M.N., Nguyen-Xuan, H., Zhuang, X., Areias, P., Zi, G., Bazilevs, Y.D.L.L.R.T., De Lorenzis, L. and Rabczuk, T. (2015), "An extended isogeometric thin shell analysis based on Kirchhof-Love theory", Comput. Method. Appl. Mech. Eng., 284, 265-291. https://doi.org/10.1016/j.cma.2014.08.025
- Ozdemir, Y.I. (2018), "Using fourth order element for free vibration parametric analysis of thick plate resting on elastic foundation", Struct. Eng. Mech., Int. J., 65(3), 213-222. http://doi.org/10.12989/sem.2018.65.3.213
- Paluszny, A., Tang, X.H. and Zimmerman, R.W. (2013), "Fracture and impulse based finite-discrete element modeling of fragmentation", Comput. Mech., 52(5), 1071-1084. http://doi.org/10.1007/s00466-013-0864-5
- Pandey, S. and Pradyumna, S. (2015), "A layerwise finite element formulation for free vibration analysis of functionally graded sandwich shells", Compos. Struct., 133, 438-450. https://doi.org/10.1016/j.compstruct.2015.07.087
- Plagianakos, T.S. and Papadopoulos, E.G. (2015), "Coupled higher-order layerwise mechanics and finite element for cylindrical composite and sandwich shells with piezoelectric transducers", Europ. J. Mech. A/Solids., 54, 11-23. https://doi.org/10.1016/j.euromechsol.2015.06.003
- Pradhan, S.C. and Mandal, U. (2013), "Finite element analysis of CNTs based on nonlocal elasticity and Timoshenko beam theory including thermal effect", Physica E., 53, 223-232. https://doi.org/10.1016/j.physe.2013.04.029
- Qing, G., Qiu, J. and Liu, Y. (2018), "Free vibration analysis of Stiffened Laminated Plate using FEM", Mater. Today. Proce., 5(2), 5313-5321. https://doi.org/10.1016/j.matpr.2017.12.115
- Rabczuk, T., Ren, H. and Zhuang, X. (2019), "A nonlocal operator method for partial differential equations with application to electromagnetic waveguide problem", Comput. Mater. Contin., 59(1), 31-55. https://doi.org/10.32604/cmc.2019.04567
- Rajabi, J. and Mohammadimehr, M. (2019), "Bending analysis of a micro sandwich skew plate using extended Kantorovich method based on Eshelby-Mori-Tanaka approach", Comput. Concrete, Int. J., 23(5), 361-376. http://doi.org/10.12989/cac.2019.23.5.361
- Romanoff, J., Reddy, J.N. and Jelovica, J. (2016), "Using nonlocal Timoshenko beam theories for prediction of micro- and macro-structural responses", Compos. Struct., 156, 410-420. https://doi.org/10.1016/j.compstruct.2015.07.010
- Sapountzakis, E.J., Tsipiras, V.J. and Argyridi, A.K. (2015), "Torsional vibration analysis of bars including secondary torsional shear deformation effect by the boundary element method", J. Sound. Vib., 355, 208-231. https://doi.org/10.1016/j.jsv.2015.04.032
- Setoodeh, A.R., Shojaee, M. and Malekzadeh, P. (2018), "Application of transformed differential quadrature to free vibration analysis of FG-CNTRC quadrilateral spherical panel with piezoelectric layers", Comput. Method. Appl. Mech. Eng., 335, 510-537. https://doi.org/10.1016/j.cma.2018.02.022
- Shahedi, S. and Mohammadimehr, M. (2019), "Vibration analysis of rotating fully-bonded and delaminated sandwich beam with CNTRC face sheets and AL-foam flexible core in thermal and moisture environments", Mech. Based Des. Struct. Mach., 48(5), 584-614. https://doi.org/10.1080/15397734.2019.1646661
- Soleimani, I. and Beni, Y.T. (2018), "Vibration analysis of nanotubes based on two-node size dependent axisymmetric shell element", Arch. Civil. Mech. Eng., 18(4), 1345-1358. https://doi.org/10.1016/j.acme.2018.04.009
- Song, Z.G., Zhang, L.W. and Liew, K.M. (2016), "Vibration analysis of CNT-reinforced functionally graded composite cylindrical shells in thermal environments", Int. J. Mech. Sci., 115-116, 339-347. https://doi.org/10.1016/j.ijmecsci.2016.06.020
- Soni, S., Jain, N.K. and Joshi, P.V. (2018), "Vibration analysis of partially cracked plate submerged in fluid", J. Sound. Vib., 412, 28-57. https://doi.org/10.1016/j.jsv.2017.09.016
- Tabbakh, M. and Nasihatgozar, M. (2018), "Buckling analysis of nanocomposite plates coated by magnetostrictive layer", Smart Struct. Syst., Int. J., 22(6), 743-751. http://.doi.org/10.12989/sss.2018.22.6.743
- Tang, X.H., Paluszny, A. and Zimmerman, R.W. (2013), "Energy conservative property of impulse-based methods for collision resolution", Int. J. Numer. Method. Eng., 95(6), 529-540. https://doi.org/10.1002/nme.4537
- Tang, X., Paluszny, A. and Zimmerman, R.W. (2014), "An impulse-based energy tracking method for collision resolution", Comput. Method. Appl. Mech. Eng., 278, 160-185. https://doi.org/10.1016/j.cma.2014.05.004
- Thai, S., Thai, H.T., Vo, T.P. and Nguyen-Xuan, H. (2017), "Nonlinear static and transient isogeometric analysis of functionally graded microplates based on the modified strain gradient theory", Eng. Struct., 153, 598-612. https://doi.org/10.1016/j.engstruct.2017.10.002
- Thai, C.H., Ferreira, A.J.M. and Nguyen-Xuan, H. (2018), "Isogeometric analysis of size-dependent isotropic and sandwich functionally graded microplates based on modified strain gradient elasticity theory", Compos. Struct., 192, 274-288. https://doi.org/10.1016/j.compstruct.2018.02.060
- Vu-Bac, N., Lahmer, T., Zhuang, X., Nguyen-Thoi, T. and Rabczuk, T. (2016), "A software framework for probabilistic sensitivity analysis for computationally expensive models", Comput. Method. Appl. Mech. Eng., 100, 19-31. https://doi.org/10.1016/j.advengsoft.2016.06.005
- Xu, Y., Qian, Y. and Song, G. (2016), "Stochastic finite element method for free vibration characteristics of random FGM", Appl. Math. Model., 40(23-24), 10238-10253. https://doi.org/10.1016/j.apm.2016.07.025
- Yang, F.A.C.M., Chong, A.C.M., Lam, D.C.C. and Tong, P. (2002), "Couple stress based strain gradient theory for elasticity", Int. J. Solid. Struct., 39(10), 2731-2743. https://doi.org/10.1016/S0020-7683(02)00152-X
- Yang, J., Xiong, J., Ma, L., Zhang, G., Wang, X. and Wu, L. (2014), "Study on vibration damping of composite sandwich cylindrical shell with pyramidal truss-like cores", Compos. Struct., 117, 362-372. https://doi.org/10.1016/j.compstruct.2014.06.042
- Yang, Y., Chen, L., Xu, D. and Zheng, H. (2016), "Free and forced vibration analyses using the four-node quadrilateral element with continuous nodal stress", Eng. Anal. Bound. Element., 70, 1-11. https://doi.org/10.1016/j.enganabound.2016.05.005
- Yue, Y.M., Xu, K.Y. and Chen, T. (2016), "A micro scale Timoshenko beam model for piezoelectricity with flexoelectricity and surface effects", Compos. Struct., 136, 278-286. https://doi.org/10.1016/j.compstruct.2015.09.046
- Zeinkiewicz, O.C. and Taylor, R.L. (2000), The Finite Element Method, (5th edition), Oxford: Butterworth- Heinemann, USA.
- Zhang, H., Wang, C.M., Ruocco, E. and Challamel, N. (2016a), "Hencky bar-chain model for buckling and vibration analyses of non-uniform beams on variable elastic foundation", Eng. Struct., 126, 252-263. https://doi.org/10.1016/j.engstruct.2016.07.062
- Zhang, L.W., Zhang, Y. and Liew, K.M. (2016b), "Free vibration analysis of triangular nanocomposite plates subjected to in-plane stresses using an element-free method", Compos. Struct., 149, 247-260. https://doi.org/10.1016/j.compstruct.2016.04.019
- Zhu, P., Lei, Z.X. and Liew, K.M. (2012), "Static and free vibration analyses of carbon nanotube-reinforced composite plates using finite element method with first order shear deformation plate theory", Compos. Struct., 94(4), 1450-1460. https://doi.org/10.1016/j.compstruct.2011.11.010