DOI QR코드

DOI QR Code

Hybrid-ANFIS approaches for compressive strength prediction of cementitious mortar and paste employing magnetic water

  • Kaloop, Mosbeh R. (Department of Civil and Environmental Engineering, Incheon National University) ;
  • Yousry, Omar M.M. (Structural Engineering Department, Tanta University) ;
  • Samui, Pijush (Department of Civil Engineering, National Institute of Technology Patna) ;
  • Elshikh, Mohamed M.Y. (Structural Engineering Department, Mansoura University) ;
  • Hu, Jong Wan (Department of Civil and Environmental Engineering, Incheon National University)
  • 투고 : 2020.06.07
  • 심사 : 2020.12.19
  • 발행 : 2021.04.25

초록

The compressive strength is an important mechanical feature of concrete that is needed in construction design. Thus, a lot of investigations were carried out to predict the compressive strength of various concretes. However, the prediction models for the compressive strength of cement mortar or paste that include magnetic water (MW) and granulated blast-furnace slag (GBFS) are still limited. The current study has developed hybrid algorithms based on adaptive neuro-fuzzy inference system (ANFIS) for modeling the compressive strength of cement mortar and paste that made with MW and GBFS as a novel mixture content. A total of 144 experimental sets of concrete-compressive strength tests for each cement mortar and paste were collected to train and validate the proposed methods, in which the cycles number of water magnetization, cement, GBFS, superplasticizer contents and curing time are set as the input data while the compressive strength value is set as the output. The developed hybrid algorithms of ANFIS optimized by firefly algorithm (FA), Improved Particle Swarm Optimization (IPSO) and biogeography-based optimization (BBO) algorithms for predicting the compressive strength of the mortar and paste. The proposed models and relevance vector machine (RVM) approach were evaluated and compared. The results showed that the ANFIS-FA outperforms other models for modeling the compressive strength of cement mortar and paste. The adjusted-coefficient of determination and root mean square error values of cement mortar models (96.20%, 92.33%, 92.36% and 89.41%) and (2.17 MPa, 3.10 MPa, 3.18 MPa and 3.06 MPa) and of cement paste models (96.92%, 80.91%, 92.19% and 88.18%) and (2.45 MPa, 5.80 MPa, 4.39 MPa and 5.20 MPa) were determined for ANFIS-FA, ANFIS-IPSO, ANFIS-BBO and RVM models, respectively, which indicate that the ANFIS-FA is a suitable model for estimating the compressive strength of cement mortar and paste that include MW. Moreover, the sensitivity of MW and GBFS is shown high for modeling the compressive strength of cement mortar.

키워드

과제정보

This work was supported by Incheon National University Research Concentration Professors Grant in 2019.

참고문헌

  1. Aggarwal, P., Aggarwal, Y., Siddique, R., Gupta, S. and Garg, H. (2013), "Fuzzy logic modeling of compressive strength of high-strength concrete (HSC) with supplementary cementitious material", J. Sustain. Cement-Based Mater., 2(2), 128-143. https://doi.org/10.1080/21650373.2013.801800
  2. Ahmadlou, M., Karimi, M., Alizadeh, S., Shirzadi, A., Parvinnejhad, D., Shahabi, H. and Panahi, M. (2019), "Flood susceptibility assessment using integration of adaptive network-based fuzzy inference system (ANFIS) and biogeography-based optimization (BBO) and BAT algorithms (BA)", Geocarto Int., 34(11), 1252-1272. https://doi.org/10.1080/10106049.2018.1474276
  3. Aiyer, B.G., Kim, D., Karingattikkal, N., Samui, P. and Rao, P.R. (2014), "Prediction of compressive strength of self-compacting concrete using least square support vector machine and relevance vector machine", KSCE J. Civil Eng., 18(6), 1753- 1758. https://doi.org/10.1007/s12205-014-0524-0
  4. Akkurt, S., Tayfur, G. and Can, S. (2004), "Fuzzy logic model for the prediction of cement compressive strength", Cement Concrete Res., 34(8), 1429-1433. https://doi.org/10.1016/j.cemconres.2004.01.020
  5. Al-Swaidani, A.M. and Khwies, W. (2018), "Applicability of Artificial Neural Networks to Predict Mechanical and Permeability Properties of Volcanic Scoria-Based Concrete", Adv. Civil Eng., 2018, Article ID 5207962.
  6. American Society for Testing and Materials International (2011), ASTM C150- Standard Specification for Portland Cement. Annual Book of ASTM Standards. https://doi.org/10.1002/jbm.b.31853
  7. Armaghani, D. and Asteris, P. (2020), "A comparative study of ANN and ANFIS models for the prediction of cement-based mortar materials compressive strength", Neural Comput. Applic. https://doi.org/10.1007/s00521-020-05244-4
  8. ASTM Standard C33 (2003), Standard Specification for Concrete Aggregates, ASTM International. https://doi.org/10.1520/C0033
  9. Benmouiza, K. and Cheknane, A. (2019), "Clustered ANFIS network using fuzzy c-means, subtractive clustering, and grid partitioning for hourly solar radiation forecasting", Theor. Appl. Climatol., 137, 31-43. https://doi.org/10.1007/s00704-018-2576-4
  10. Bharath, S., Subraja, S. and Kumar, P.A. (2016), "Influence of magnetized water on concrete by replacing cement partially with copper slag", J. Chem. Pharmaceut. Sci., 9(4), 2791-2795.
  11. Biswas, R., Samui, P. and Rai, B. (2019), "Determination of compressive strength using relevance vector machine and emotional neural network", Asian J. Civil Eng., 20(8), 1109-1118. https://doi.org/10.1007/s42107-019-00171-9
  12. Boukhari, Y. (2020), "Using intelligent models to predict weight loss of raw materials during cement clinker production", Revue d'Intelligence Artificielle, 34(1), 101-110. https://doi.org/10.18280/ria.340114
  13. Chu, S.H. (2019), "Effect of paste volume on fresh and hardened properties of concrete", Constr. Build. Mater., 218, 284-294. https://doi.org/10.1016/j.conbuildmat.2019.05.131
  14. Dhir, R.K., Brito, J. de, Mangabhai, R. and Lye, C.Q. (2017), "Copper Slag in Cement Manufacture and as Cementitious Material", In: Sustainable Construction Materials: Copper Slag, pp. 165-209. https://doi.org/10.1016/B978-0-08-100986-4.00005-5
  15. Du, D., Simon, D. and Ergezer, M. (2009), "Biogeography-based optimization combined with evolutionary strategy and immigration refusal", Proceedings of 2009 IEEE International Conference on Systems, Man and Cybernetics, pp. 997-1002. https://doi.org/10.1109/ICSMC.2009.5346055
  16. Dutta, S., Samui, P. and Kim, D. (2018), "Comparison of machine learning techniques to predict compressive strength of concrete", Comput. Concrete, Int. J., 21(4), 463-470. https://doi.org/10.12989/cac.2018.21.4.463
  17. Eldessouki, M. and Hassan, M. (2015), "Adaptive neuro-fuzzy system for quantitative evaluation of woven fabrics' pilling resistance", Expert Syst. Applic., 42(4), 2098-2113. https://doi.org/10.1016/j.eswa.2014.10.013
  18. Esfahani, A.R., Reisi, M. and Mohr, B. (2018), "Magnetized water effect on compressive strength and dosage of superplasticizers and water in self-compacting concrete", J. Mater. Civil Eng., 30(3), 1-7. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002174
  19. Gilan, S., Jovein, H. and Ramezanianpour, A. (2012), "Hybrid support vector regression - Particle swarm optimization for prediction of compressive strength and RCPT of concretes containing metakaolin", Constr. Build. Mater., 34, 321-329. https://doi.org/10.1016/j.conbuildmat.2012.02.038
  20. Gulbandilar, E. and Kocak, Y. (2016), "Application of expert systems in prediction of flexural strength of cement mortars", Comput. Concrete, Int. J., 18(1), 1-16. https://doi.org/10.12989/cac.2016.18.1.001
  21. Hesami, M., Naderi, R., Tohidfar, M. and Yoosefzadeh-Najafabadi, M. (2019), "Application of Adaptive Neuro-Fuzzy Inference System-Non-dominated Sorting Genetic Algorithm-II (ANFIS-NSGAII) for Modeling and Optimizing Somatic Embryogenesis of Chrysanthemum", Frontiers Plant Sci., 10, 869. https://doi.org/10.3389/fpls.2019.00869
  22. Jaafari, A., Panahi, M., Pham, B.T., Shahabi, H., Bui, D.T., Rezaie, F. and Lee, S. (2019), "Meta optimization of an adaptive neuro-fuzzy inference system with grey wolf optimizer and biogeography-based optimization algorithms for spatial prediction of landslide susceptibility", Catena, 175, 430-445. https://doi.org/10.1016/j.catena.2018.12.033
  23. Jalal, M., Grasley, Z., Gurganus, C. and Bullard, J.W. (2020), "Experimental investigation and comparative machine-learning prediction of strength behavior of optimized recycled rubber concrete", Constr. Build. Mater., 256, 119478. https://doi.org/10.1016/j.conbuildmat.2020.119478
  24. Kaloop, M.R., El-diasty, M., Hu, J.W. and El-diasty, M. (2017), "Real-time prediction of water level change using adaptive neuro-fuzzy inference system", Geomat. Natural Hazard. Risk, 8(2), 1320-1332. https://doi.org/10.1080/19475705.2017.1327464
  25. Kamarian, S., Yas, M.H., Pourasghar, A. and Daghagh, M. (2014), "Application of firefly algorithm and ANFIS for optimisation of functionally graded beams", J. Experim. Theor. Artif. Intell., 26, 197-209. https://doi.org/10.1080/0952813X.2013.813978
  26. Khorshidi, N., Ansari, M. and Bayat, M. (2014), "An investigation of water magnetization and its influence on some concrete specificities like fluidity and compressive strength", Comput. Concrete, Int. J., 13(5), 649-657. https://doi.org/10.12989/cac.2014.13.5.649
  27. Kockal, N. (2015), "Optimizing production parameters of ceramic tiles incorporating fly ash using response surface methodology", Ceramics Int., 41, 14529-14536. https://doi.org/10.1016/j.ceramint.2015.07.168
  28. Kockal, N., Beycan, O. and Gulmez, N. (2017), "Physical and mechanical properties of silica fume and calcium hydroxide based geopolymers", Acta Physica Polonica A, 131(3), 530-533. https://doi.org/10.12693/APhysPolA.131.530
  29. Kockal, N., Beycan, O. and Gulmez, N. (2018), "Effect of binder type and content on physical and mechanical properties of geopolymers", Sadhana, 43, Article No. 49. https://doi.org/10.1007/s12046-018-0806-1
  30. Liong, S.-Y., Lim, W.-H. and Paudyal, G. (2000), "River stage forecasting in Bangladish: Neural network approach", J. Comput. Civil Eng., 14(1), 1-8. https://doi.org/10.1061/(ASCE)0887-3801(2000)14:1(1)
  31. Ly, H.B., Pham, B.T., Dao, D.V., Le, V.M., Le, L.M. and Le, T.T. (2019), "Improvement of ANFIS model for prediction of compressive strength of manufactured sand concrete", Appl. Sci., 9(18), 3841. https://doi.org/10.3390/app9183841
  32. Ma, B., Mei, J., Tan, H., Li, H., Liu, X., Jiang, W. and Zhang, T. (2019), "Effect of Nano Silica on Hydration and Microstructure Characteristics of Cement High Volume Fly Ash System Under Steam Curing", J. Wuhan Univ. Technol.-Mater. Sci. Ed., 34(3), 604-613. https://doi.org/10.1007/s11595-019-2094-y
  33. Madani, H., Kooshafar, M. and Emadi, M. (2020), "Compressive Strength Prediction of Nanosilica-Incorporated Cement Mixtures Using Adaptive Neuro-Fuzzy Inference System and Artificial Neural Network Models", Pract. Period. Struct. Des. Constr., 25(3), 04020021. https://doi.org/10.1061/(ASCE)SC.1943-5576.0000499
  34. Mansouri, I., Ozbakkaloglu, T., Kisi, O. and Xie, T. (2016), "Predicting behavior of FRP-confined concrete using neuro fuzzy, neural network, multivariate adaptive regression splines and M5 model tree techniques", Mater. Struct./Materiaux et Constr., 49(10), 4319-4334. https://doi.org/10.1617/s11527-015-0790-4
  35. Mansouri, I., Kisi, O., Sadeghian, P., Lee, C.H. and Hu, J.W. (2017), "Prediction of ultimate strain and strength of FRP-confined concrete cylinders using soft computing methods", Appl. Sci., 7(8), 751. https://doi.org/10.3390/app7080751
  36. Mansouri, I., Gholampour, A., Kisi, O. and Ozbakkaloglu, T. (2018), "Evaluation of peak and residual conditions of actively confined concrete using neuro-fuzzy and neural computing techniques", Neural Comput. Applic., 29(3), 873-888. https://doi.org/10.1007/s00521-016-2492-4
  37. Mansouri, I., Shariati, M., Safa, M., Ibrahim, Z., Tahir, M.M. and Petkovic, D. (2019), "Analysis of influential factors for predicting the shear strength of a V-shaped angle shear connector in composite beams using an adaptive neuro-fuzzy technique", J. Intell. Manuf., 30(3), 1247-1257. https://doi.org/10.1007/s10845-017-1306-6
  38. Mishra, M., Bhatia, A.S. and Maity, D. (2019a), "A comparative study of regression, neural network and neuro-fuzzy inference system for determining the compressive strength of brick-mortar masonry by fusing nondestructive testing data", Eng. Comput., 37, 77-91. https://doi.org/10.1007/s00366-019-00810-4
  39. Mishra, M., Bhatia, A.S. and Maity, D. (2019b), "Support vector machine for determining the compressive strength of brick-mortar masonry using NDT data fusion (case study: Kharagpur, India)", SN Appl. Sci., 1(6), 564. https://doi.org/10.1007/s42452-019-0590-5
  40. Moghadam, R.G., Izadbakhsh, M.A., Yosefvand, F. and Shabanlou, S. (2019), "Optimization of ANFIS network using firefly algorithm for simulating discharge coefficient of side orifices", Appl. Water Sci., 9(4), 1-12. https://doi.org/10.1007/s13201-019-0950-8
  41. Murthy, A.R., Vishnuvardhan, S., Saravanan, M. and Gandhi, P. (2019), "Relevance vector based approach for the prediction of stress intensity factor for the pipe with circumferential crack under cyclic loading", Struct. Eng. Mech., Int. J., 72(1), 31-41. https://doi.org/10.12989/sem.2019.72.1.793
  42. Murlidhar, B.R., Kumar, D., Armaghani, D.J., Mohamad, E.T., Roy, B. and Pham, B.T. (2020), "A novel intelligent ELM-BBO technique for predicting distance of mine blasting-induced flyrock", Natural Resour. Res., 29, 4103-4120. https://doi.org/10.1007/s11053-020-09676-6
  43. Pannu, H.S., Singh, D. and Malhi, A.K. (2018), "Improved particle swarm optimization based adaptive neuro-fuzzy inference system for benzene detection", CLEAN - Soil, Air, Water, 46(5), 1700162. https://doi.org/10.1002/clen.201700162
  44. Prasad Meesaraganda, L.V., Sarkar, N. and Tarafder, N. (2020), "Adaptive Neuro-Fuzzy Inference System for Predicting Strength of High-Performance Concrete", In: Advances in Intelligent Systems and Computing, Springer, Singapore pp. 119-134. https://doi.org/10.1007/978-981-15-0035-0_10
  45. Prasanna, P.K., Ramachandra Murthy, A. and Srinivasu, K. (2018), "Prediction of compressive strength of GGBS based concrete using RVM", Struct. Eng. Mech., Int. J., 68(6), 691-700. https://doi.org/10.12989/sem.2018.68.6.691
  46. Qadir, W., Ghafor, K. and Mohammed, A. (2019), "Evaluation the effect of lime on the plastic and hardened properties of cement mortar and quantified using Vipulanandan model", Open Eng., 9(1), 468-480. https://doi.org/10.1515/eng-2019-0055
  47. Rahchamani, G., Movahedifar, S.M. and Honarbakhsh, A. (2019), "A hybrid optimized learning-based compressive performance of concrete prediction using GBMO-ANFIS classifier and genetic algorithm reduction", Struct. Concrete, suco.201900155. https://doi.org/10.1002/suco.201900155
  48. Rayen, S.J. and Subhashini, R. (2019), "Mammogram image retrieval using IPSO optimized anfis classifier", Int. J. Innov. Technol. Explor. Eng., 8(9 Special Issue 2), 799-804. https://doi.org/10.35940/ijitee.I1165.0789S219
  49. Razavi Tosee, S.V. and Nikoo, M. (2019), "Neuro-fuzzy systems in determining light weight concrete strength", J. Central South Univ., 26(10), 2906-2914. https://doi.org/10.1007/s11771-019-4223-3
  50. Riahi-Madvar, H., Dehghani, M., Parmar, K.S., Nabipour, N. and Shamshirband, S. (2020), "Improvements in the explicit estimation of pollutant dispersion coefficient in rivers by subset selection of maximum dissimilarity hybridized with ANFIS-firefly algorithm (FFA)", IEEE Access, 8, 60314-60337. https://doi.org/10.1109/ACCESS.2020.2979927
  51. Safiuddin, M., Raman, S., Abdus Salam, M. and Jumaat, M. (2016), "Modeling of compressive strength for self-consolidating high-strength concrete incorporating palm oil fuel ash", Materials, 9(5), 396. https://doi.org/10.3390/ma9050396
  52. Selma, B., Chouraqui, S. and Abouaissa, H. (2020), "Optimal trajectory tracking control of unmanned aerial vehicle using ANFIS-IPSO system", Int. J. Inform. Technol., 12(2), 383-395. https://doi.org/10.1007/s41870-020-00436-6
  53. Seo, J. and Pokhrel, J. (2019), "Surrogate modeling for self-consolidating concrete characteristics estimation for efficient prestressed bridge construction", ACI Special Publication, 333, pp. 19-39.
  54. Seo, J., Kim, Y. and Zandyavari, S. (2015), "Response Surface Metamodel-based Performance Reliability for Reinforced Concrete Beams Strengthened with FRP sheets", ACI Special Publication, 304, pp. 1-20.
  55. Seo, J., Torres, E. and Schaffer, W. (2017), "Self-Consolidating Concrete for Prestressed Bridge Girders", Report; South Dakota State University, USA.
  56. Simon, D. (2008), "Biogeography-based optimization", IEEE Transact. Evolution Computat., 12(6), 702-713. https://doi.org/10.1109/TEVC.2008.919004
  57. Sinha, D.K., Rupali, S. and Bawa, S. (2019), "Application of Adaptive Neuro- Fuzzy Inference System for the prediction of Early Age Strength of High Performance Concrete", Proceedings of 2019 International Conference on Data Science and Engineering (ICDSE), 1-5. https://doi.org/10.1109/ICDSE47409.2019.8971798
  58. Su, N., Wu, Y.-H. and Mar, C.-Y. (2000), "Effect of magnetic water on the engineering properties of concrete containing granulated blast-furnace slag", Cement Concrete Res., 30(4), 599-605. https://doi.org/10.1016/S0008-8846(00)00215-5
  59. Tayfur, G., Erdem, T.K. and Kirca, O. (2014), "Strength Prediction of High-Strength Concrete by Fuzzy Logic and Artificial Neural Networks", J. Mater. Civil Eng., 26(11), 04014079. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000985
  60. Taylor, P., Yurdakul, E., Ceylan, H. and Bektas, F. (2012), "Effect of Paste Quality on Fresh and Hardened Properties of Ternary Mixtures", In: IOWA State University (Vol. DTFH61-06-). https://doi.org/10.1016/j.conbuildmat.2019.05.131
  61. Termeh, S.V.R., Khosravi, K., Sartaj, M., Keesstra, S.D., Tsai, F. T.C., Dijksma, R. and Pham, B.T. (2019), "Optimization of an adaptive neuro-fuzzy inference system for groundwater potential mapping", Hydrogeol. J., 27(7), 2511-2534. https://doi.org/10.1007/s10040-019-02017-9
  62. Tipping, M.E. (2000), "Sparse Bayesian learning and the relevance vector machine", J. Mach. Learn. Res., 1, 211-244. https://doi.org/10.1162/15324430152748236
  63. Torres, E. and Seo, J. (2017), "State-of-the-art and practice review and recommended testing protocol: self-consolidating concrete for prestressed bridge girders", Eur. J. Environ. Civil Eng., 21(12), 1419-1440. https://doi.org/10.1080/19648189.2016.1170730
  64. Torres, E., Seo, J. and Lederle, R. (2017), "Experimental and Statistical Investigation of Self-Consolidating Concrete Mixture Constituents for Prestressed Bridge Girder Fabrication", J. Mater. Civil Eng., 29(9), 04017141. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001968
  65. Verma, M., Thirumalaiselvi, A. and Rajasankar, J. (2017), "Kernel-based models for prediction of cement compressive strength", Neural Comput. Applic., 28(S1), 1083-1100. https://doi.org/10.1007/s00521-016-2419-0
  66. Wang, Y., Wei, H. and Li, Z. (2018), "Effect of magnetic field on the physical properties of water", Results in Phys., 8, 262-267. https://doi.org/10.1016/j.rinp.2017.12.022
  67. Xiao, Y., Liu, J.J., Hu, Y., Wang, Y., Lai, K.K. and Wang, S. (2014), "A neuro-fuzzy combination model based on singular spectrum analysis for air transport demand forecasting", J. Air Transport Manage., 39, 1-11. https://doi.org/10.1016/j.jairtraman.2014.03.004
  68. Yang, X.S. (2010), "Firefly algorithm, stochastic test functions and design optimization", Int. J. Bio-Inspired Computat., 2(2), 78. https://doi.org/10.1504/IJBIC.2010.032124
  69. Yousry, O.M.M., Abdallah, M.A., Ghazy, M.F., Taman, M.H. and Kaloop, M.R. (2020), "A Study for Improving Compressive Strength of Cementitious Mortar Utilizing Magnetic Water", Materials, 13, 1971. https://doi.org/10.3390/ma13081971
  70. Yuvaraj, P., Murthy, A.R., Iyer, N.R., Samui, P. and Sekar, S. (2014), "Prediction of fracture characteristics of high strength and ultra high strength concrete beams based on relevance vector machine", Int. J. Damage Mech., 23(7), 979-1004. https://doi.org/10.1177/1056789514520796