References
- Amadei, B. (1988), "Strength of a regularly jointed rock mass under biaxial and axisymmetric loading conditions", Int. J. Rock Mech. Min Sci., 25(3), 3-13. https://doi.org/10.1016/0148-9062(88)92712-X
- Coli, N., Berry, P. and Boldini, D. (2011), "In situ nonconventional shear tests for the mechanical characterization of a bimrock", Int. J. Rock Mech. Min. Sci., 48, 95-102. https://doi.org/10.1016/j.ijrmms.2010.09.012
- Cook, N.G.W. (1976), "Seismicity associated with mining", Eng. Geol., 10, 99-122. https://doi.org/10.1016/0013-7952(76)90015-6
- Cundall, P.A. and Strack, O.D.L. (1979), "A discrete numerical model for granular assemblies", Geotechnique, 29(1), 47-65. https://doi.org/10.1680/geot.1979.29.1.47
- Esmaieli, K., Hadjigeorgiou, J. and Grenon, M. (2010), "Estimating geometrical and mechanical REV based on synthetic rock mass models at Brunswick Mine", Int. J. Rock Mech. Min. Sci., 47(6), 915-926. https://doi.org/10.1016/j.ijrmms.2010.05.010
- Fang, Z. and Harrison, J.P. (2002), "Numerical analysis of progressive fracture and associated behaviour of mine pillars by use of a local degradation model", Trans. Instn. Min. Metal., 111, 59-72. https://doi.org/10.1179/mnt.2002.111.1.59
- Gerrard, C.M. (1982), "Elastic models of rock masses having one, two and three sets of joints", Int. J. Rock Mech. Min Sci., 19, 15-23. https://doi.org/10.1016/0148-9062(82)90706-9
- Ghazvinian, A., Sarfarazi, V., Schubert, W. and Blumel, M. (2012), "A study of the failure mechanism of planar non-persistent open joints using PFC2D", Rock Mech. Rock Eng., 45(5), 677-693. https://doi.org/10.1007/s00603-012-0233-2
- Hoek, E. and Brown, E.T. (1997), "Practical estimates of rock mass strength", Int. J. Rock Mech. Min. Sci., 34(8), 1165-1186. https://doi.org/10.1016/S1365-1609(97)80069-X
- Halakatevakis, N. and Sofianos, A. (2010), "Strength of a blocky rock mass based on an extended plane of weakness theory", Int. J. Rock Mech. Min Sci., 47(4), 568-582. https://doi.org/10.1016/j.ijrmms.2010.01.008
- Haeri, H. and Sarfarazi, V. (2016a), "The effect of micro pore on the characteristics of crack tip plastic zone in concrete", Comput. Concrete, Int. J., 17(1), 107-112. https://doi.org/10.12989/cac.2016.17.1.107
- Haeri, H. and Sarfarazi, V. (2016b), "The effect of non-persistent joints on sliding direction of rock slopes", Comput. Concrete, Int. J., 17(6), 723-737. https://doi.org/10.12989/cac.2016.17.6.723
- Haeri, H. and Sarfarazi, V. (2016c), "The deformable multilaminate for predicting the elasto-plastic behavior of rocks", Comput. Concrete, Int. J., 18, 201-214. https://doi.org/10.12989/cac.2016.18.2.201
- Haeri, H., Sarfarazi, V. and Lazemi, H.A. (2016d), "Experimental study of shear behavior of planar non-persistent joint", Comput. Concrete, Int. J., 17(5), 639-653. https://doi.org/10.12989/cac.2016.17.5.649
- Halakatevakis, N. and Sofianos, A. (2010), "Strength of a blocky rock mass based on an extended plane of weakness theory", Int. J. Rock Mech. Min Sci., 47(4), 568-582. https://doi.org/10.1016/j.ijrmms.2010.01.008
- Ivars, D.M., Pierce, M.E., Darcel, C., Reyes-Montes, J., Potyondy, D.O., Young, R.P. and Cundall, P.A. (2011), "The synthetic rock mass approach for jointed rock mass modelling", Int. J. Rock Mech Min Sci., 48(2), 219-244. https://doi.org/10.1016/j.ijrmms.2010.11.014
- Khani, A. (2013), "Numerical investigation of the effect of fracture intensity on deformability and REV of fractured rock masses", Int. J. Rock Mech. Min. Sci., 63, 104-112. https://doi.org/10.1016/j.ijrmms.2013.08.006
- Khani, A., Baghbanan, A., Norouzi, S. and Hashemolhosseini, H. (2013), "Effects of fracture geometry and stress on the strength of a fractured rock mass", Int. J. Rock Mech. Min. Sci., 60, 345-352. https://doi.org/10.1016/j.ijrmms.2013.01.011
- Kulatilake, H. and Stephansson, O. (1994), "Effect of finite size joints on the deformability of jointed rock at the two dimensional level", Can. Geo. Tech. J., 31, 364-374. https://doi.org/10.1139/t94-044
- Lin, Q., Cao, P., Cao, R., Lin, H. and Meng, J. (2020), "Mechanical behaviour around double circular openings in a jointed rock mass under uniaxial compression", Arch. Civil Mech. Eng., 20(1), 19. https://doi.org/10.1007/s43452-020-00027-z
- Martina, C.D. and Maybee, W.G. (2000), "The strength of hardrock pillars", Int. J. Rock Mech. Min. Sci., 37, 1239-1246. https://doi.org/10.1016/S1365-1609(00)00032-0
- Min, K.B. and Jing, L. (2003), "Numerical determination of the equivalent elastic compliance tensor for fractured rock masses using the distinct element method", Int. J Rock Mech. Min Sci., 40(6), 795-816. https://doi.org/10.1016/S1365-1609(03)00038-8
- Ozkan, I., Erdem, B.u.L.E.N.T. and Ceylanoglu, A. (2015), "Characterization of jointed rock masses for geotechnical classifications utilized in mine shaft stability analyses", Int. J. Rock Mech. Min. Sci., 73, 28-41. https://doi.org/10.1016/j.ijrmms.2014.10.001
- Palmstrom, A. and Singh, R. (2001), "The deformation modulus of rock masses: comparisons between in situ tests and indirect estimates", Tunnel. Undergr. Space Technol., 16, 115-131. https://doi.org/10.1016/S0886-7798(01)00038-4
- Potyondy, D.O. and Cundall, P.A. (2004), "A bonded-particle model for rock", Int. J. Rock Mech. Min. Sci., 41, 1329-1364. https://doi.org/10.1016/j.ijrmms.2004.09.011
- Protosenya, A. and Verbilo, P. (2016), "Forecast Jointed Rock Mass Compressive Strength Using a Numerical Model", MATEC Web of Conferences, Volume 73, Article number 04006.
- Ranjith, P.G., Fourar, M., Pong, S.F., Chian, W. and Haque, A. (2004), "Characterization of fractured rocks under uniaxial loading states", Int. J. Rock Mech. Min. Sci., 41, 43-48. https://doi.org/10.1016/j.ijrmms.2004.03.017
- Sarfarazi, V. and Haeri, H. (2016), "Effect of number and configuration of bridges on shear properties of sliding surface", J. Min. Sci., 52(2), 245-257. https://doi.org/10.1134/S1062739116020370
- Sarfarazi, V., Ghazvinian, A., Schubert, W., Blumel, M. and Nejati, H.R. (2014), "Numerical simulation of the process of fracture of Echelon rock joints", Rock Mech. Rock Eng., 47(4), 1355-1371. https://doi.org/10.1007/s00603-013-0450-3
- Sarfarazi, V., Faridi, H.R., Haeri, H. and Schubert, W. (2016), "A new approach for measurement of anisotropic tensile strength of concrete", Adv. Concrete Constr., Int. J., 3(4), 269-284. https://doi.org/10.12989/acc.2015.3.4.269
- Sarfarazi, V., Haeri, H., Shemirani, A. and Zhu, Z. (2017), "Shear behavior of non-persistent joint under high normal load". Strength Mater., 49, 320-334. https://doi.org/10.1007/s11223-017-9872-6
- Wang, P. (2016), "Numerical analysis on scale effect of elasticity, strength and failure patterns of jointed rock masses", Geosci. J., 20(4), 539-549. https://doi.org/10.1007/s12303-015-0070-x
- Yang, J.P., Chen, W.Z., Yang, D.S. and Yuan, J.Q. (2015), "Numerical determination of strength and deformability of fractured rock mass by FEM modeling", Comput. Geotech., 64, 20-31. https://doi.org/10.1016/j.compgeo.2014.10.011
- Yaylaci, M. (2016), "The investigation crack problem through numerical analysis", Struct. Eng. Mech., Int. J., 57(6), 1143-1156. https://doi.org/10.12989/sem.2016.57.6.1143
- Yaylaci, M. and Birinci, A. (2013), "The receding contact problem of two elastic layers supported by two elastic quarter planes", Struct. Eng. Mech., Int. J., 48(2), 241-255. https://doi.org/10.12989/sem.2013.48.2.241
- Yaylaci, M. and Birinci, A. (2015), "Analytical solution of a contact problem and comparison with the results from FEM", Struct. Eng. Mech., Int. J., 54(4), 607-622. https://doi.org/10.12989/sem.2015.54.4.607
- Yaylaci, M. and Avcar, M. (2020), "Finite element modeling of contact between an elastic layer and two elastic quarter planes", Comput. Concrete, Int. J., 26(2), 107-114. https://doi.org/10.12989/cac.2020.26.2.000
- Yaylaci, M., Terzi, C. and Avcar, M. (2019), "Numerical analysis of the receding contact problem of two bonded layers resting on an elastic half plane", Struct. Eng. Mech., Int. J., 72(6), 775-783. https://doi.org/10.12989/sem.2019.72.6.000
- Yaylaci, E.U., Yaylaci, M., Olmez, H. and Birinci, A. (2020), "Artificial neural network calculations for a receding contact problem", Comput. Concrete, Int. J., 25(6), 551-563. https://doi.org/10.12989/cac.2020.25.6.000
Cited by
- Study on the propagation mechanism of blast waves using the ultra-dynamic strain test system vol.28, pp.1, 2021, https://doi.org/10.12989/sss.2021.28.1.143