References
- Abrishambaf, A., Barros, J.A. and Cunha, V.M. (2015), "Tensile stress-crack width law for steel fibre reinforced self-compacting concrete obtained from indirect (splitting) tensile tests", Cement Concrete Compos., 57, 153-165. https://doi.org/10.1016/j.cemconcomp.2014.12.010
- Alhussainy, F., Hasan, H.A., Rogic, S., Sheikh, M.N. and Hadi, M.N. (2016), "Direct tensile testing of self-compacting concrete", Constr. Build. Mater., 112, 903-906. https://doi.org/10.1016/j.conbuildmat.2016.02.215
- Aliabadian, Z., Zhao, G.F. and Russell, A.R. (2019), "Failure, crack initiation and the tensile strength of transversely isotropic rock using the Brazilian test", Int. J. Rock Mech. Mining Sci., 122, 104073. https://doi.org/10.1016/j.ijrmms.2019.104073
- Bahaaddini, M., Sharrock, G. and Hebblewhite, B.K. (2013), "Numerical investigation of the effect of crack geometrical parameters on the mechanical properties of a non-persistent cracked rock mass under uniaxial compression", Comput. Geotech., 49, 206-225. https://doi.org/10.1016/j.compgeo.2012.10.012
- Bi, J., Zhou, X.P. and Qian, Q.H. (2016), "The 3D numerical simulation for the propagation process of multiple pre-existing flaws in rock-like materials subjected to biaxial compressive loads", Rock Mech. Rock Eng., 49, 1611-1627. https://doi.org/10.1007/s00603-015-0867-y
- Cundall, P.A. and Strack, O.D.L. (1979), "A discrete numerical model for granular assemblies", Geotechnique, 29(1), 47-65. https://doi.org/10.1680/geot.1979.29.1.47
- Donze, F.V., Richefeu, V. and Magnier, S.A. (2009), "Advances in discrete element method applied to soil rock and concrete mechanics", Electron. J. Geol. Eng., 8, 1-44.
- Eberhardt, E., Stead, D., Coggan, J. and Willenberg, H. (2002), "An integrated nu-merical analysis approach to the Randa rockslide", Proceedings of the First European Conference on Landslides, Prague, Czech Republic, June, pp. 355-332.
- Ghazvinian, A., Sarfarazi, V., Schubert, W. and Blumel, M. (2012), "A study of the failure mechanism of planar non-persistent open cracks using PFC2D", Rock Mech. Rock Eng., 45(5), 677-693. https://doi.org/10.1007/s00603-012-0233-2
- Hosseini_Nasab, H. and Fatehi Marji, M. (2007), "A semi-infinite higher-order displacement discontinuity method and its application to the quasistatic analysis of radial cracks produced by blasting", J. Mech. Mater. Struct., 2(3), 439-458. https://doi.org/10.2140/jomms.2007.2.439
- Kim, B.H., Kaiser, P.K. and Grasselli, G. (2007), "Influence of persistence on behavior of fractured rock masses", Geological Society, London, Special Publications, 284(1), 161-173. https://doi.org/10.1144/SP284.11
- Kumar, M., Rana, S., Pant, P.D. and Patel, R.C. (2017), "Slope stability analysis of Balia Nala landslide, Kumaun lesser Himalaya, Nainital, Uttarakhand, India", Journal of Rock Mechanics and Geotechnical Engineering, 9(1), 150-158. https://doi.org/10.1016/j.jrmge.2016.05.009
- Li, S., Wang, H., Li, Y., Li, Q., Zhang, B. and Zhu, H. (2016), "A new mini-grating absolute displacement measuring system for static and dynamic geomechanical model tests", Measurement, 105, 25-33. https://doi.org/10.1016/j.measurement.2017.04.002
- Lin, P., Wong, R.H., Chau, K.T. and Tang, C.A. (2000), "Multi-crack coalesence in rock-like material under uniaxial and biaxial loading", Key Eng. Mater., 183, 809-814. https://doi.org/10.4028/www.scientific.net/KEM.183-187.809
- Liu, G., Zhao, J., Song, H.W. and Li, Y.H. (2008), "Model experiments on the broken zone in intermittently jointed surrounding rock", J. China Univ. Mining Technol., 37(1), 62-66. https://doi.org/10.3321/j.issn:1000-1964.2008.01.013
- Liu, Y.I., Dai, F., Xu, N., Zhao, T. and Feng, P. (2018), "Experimental and numerical investigation on the tensile fatigue properties of rocks using the cyclic flattened Brazilian disc method", Soil Dynamics and Earthquake Engineering, 105, 68-82. https://doi.org/10.1016/j.soildyn.2017.11.025
- Marji, M.F. (2013), "On the use of power series solution method in the crack analysis of brittle materials by indirect boundary element method", Eng. Fract. Mech., 98, 365-382. https://doi.org/10.1016/j.engfracmech.2012.11.015
- Marji, M.F. (2014), "Numerical analysis of quasi-static crack branching in brittle solids by a modified displacement discontinuity method", Int. J. Solids Struct., 51(9), 1716-1736. https://doi.org/10.1016/j.ijsolstr.2014.01.022
- Marji, M.F. (2015), "Simulation of crack coalescence mechanism underneath single and double disc cutters by higher order displacement discontinuity method", J. Central South Univ., 22(3), 1045-1054. https://doi.org/10.1007/s11771-015-2615-6
- Niu, Y., Zhou, X.P., Zhang, J.Z. and Qian, Q.H. (2019), "Experimental study on crack coalescence behavior of double unparallel fissure contained sandstone specimens subjected to freeze-thaw cycles under uniaxial compression", Cold Regions Sci. Technol., 158, 166-181. https://doi.org/10.1016/j.coldregions.2018.11.015
- Omar, H., Ahmad, J., Nahazanan, H., Mohammed, T.A. and Yusoff, Z.M. (2018), "Measurement and simulation of diametrical and axial indirect tensile tests for weak rocks", Measurement, 127, 299-307. https://doi.org/10.1016/j.measurement.2018.05.067
- Potyondy, D.O. and Cundall, P.A. (2004), "A bonded-particle model for rock", Int. J. Rock Mech. Mining Sci., 41(8), 1329-1364. https://doi.org/10.1016/j.ijrmms.2004.09.011
- Roy, D.G., Singh, T.N. and Kodikara, J. (2017), "Influence of crack anisotropy on the fracturing behavior of a sedimentary rock", Eng. Geol., 228(13), 224-237. https://doi.org/10.1016/j.enggeo.2017.08.016
- Sagong, M. and Bobet, A. (2002), "Coalescence of multiple flaws in a rock-model material in uniaxial compression", Int. J. Rock Mech. Min. Sci., 39(2), 229-241. https://doi.org/10.1016/S1365-1609(02)00027-8
- Sarfarazi, V. and Haeri, H. (2016), "Effect of number and configuration of bridges on shear properties of sliding surface", J. Min. Sci., 52(2), 245-257. https://doi.org/10.1134/S1062739116020370
- Sarfarazi, V., Ghazvinian, A., Schubert, W., Blumel, M. and Nejati, H.R. (2014), "Numerical simulation of the process of fracture of Echelon rock cracks", Rock Mech. Rock Eng., 47(4), 1355-1371. https://doi.org/10.1007/s00603-013-0450-3
- Sarfarazi, V., Faridi, H.R., Haeri, H. and Schubert, W. (2016a), "A new approach for measurement of anisotropic tensile strength of concrete", Adv. Concrete Constr., Int. J., 3(4), 269-284. https://doi.org/10.12989/acc.2015.3.4.269
- Sarfarazi, V., Haeri, H. and Khaloo, A. (2016b), "The effect of non-persistent cracks on sliding direction of rock slopes", Comput. Concrete, Int. J., 17(6), 723-737. https://doi.org/10.12989/cac.2016.17.6.723
- Sarfarazi, V., Haeri, H., Shemirani, A.B. and Zhu, Z. (2017), "Shear behavior of non-persistent joint under high normal load", Strength Mater., 49, 320-334. https://doi.org/10.1007/s11223-017-9872-6
- Shang, J. (2020), "Rupture of veined granite in polyaxial compression: insights from three-dimensional discrete element method modeling", JGR Solid Earth, 125, 1-25. https://doi.org/10.1029/2019JB019052
- Shang, J., Hencher, S.R. and West, L.J. (2016), "Tensile strength of geological discontinuities including incipient bedding, rock cracks and mineral veins", Rock Mech. Rock Eng., 49, 4213-4225. https://doi.org/10.1007/s00603-016-1041-x
- Shang, J.L., Zhao, Z.Y. and Ma, S.Q. (2018a), "On the shear failure of incipient rock discontinuities under CNL and CNS boundary conditions: insights from DEM modelling", Eng. Geol., 234, 153-166. https://doi.org/10.1016/j.enggeo.2018.01.012
- Shang, J., Zhao, Z., Hu, J. and Handley, K. (2018b), "3D particlebased DEM investigation into the shear behaviour of incipient rock cracks with various geometries of rock bridges", Rock Mech. Rock Eng., 51, 3563-3584. https://doi.org/10.1007/s00603-018-1531-0
- Shang, J., Duan, K., Gui, Y., Handley, K. and Zhao, Z. (2018c), "Numerical investigation of the direct tensile behaviour of laminated and transversely isotropic rocks containing incipient bedding planes with different strengths", Comput. Geotech., 104, 373-388. https://doi.org/10.1016/j.compgeo.2017.11.007
- Tran, K.Q., Satomi, T. and Takahashi, H. (2019), "Tensile behaviors of natural fiber and cement reinforced soil subjected to direct tensile test", J. Build. Eng., 24, 100748. https://doi.org/10.1016/j.jobe.2019.100748
- Vasarhelyi, B. and Bobet, A. (2000), "Modeling of crack initiation, propagation and coalescence in uniaxial compression", Rock Mech. Rock. Eng., 33(2), 119-139. https://doi.org/10.1007/s006030050038
- Wang, Y., Zhou, X. and Xu, X. (2016), "Numerical simulation of propagation and coalescence of flaws in rock materials under compressive loads using the extended non-ordinary state-based peridynamics", Eng. Fract. Mech., 163, 273-248. https://doi.org/10.1016/j.engfracmech.2016.06.013
- Wong, L.N.Y. and Einstein, H.H. (2009a), "Crack coalescence in molded gypsum and Carrara marble: part 1. Macroscopic observations and interpretation", Rock Mech. Rock Eng., 42(3), 475-511. https://doi.org/10.1007/s00603-008-0002-4
- Wong, L.N.Y. and Einstein, H.H. (2009b), "Crack coalescence in molded gypsum and Carrara marble: Part 2. Microscopic observations and interpretation", Rock Mech. Rock Eng., 42(3), 513-545. https://doi.org/10.1007/s00603-008-0003-3
- Yaylac, M, (2016), "The investigation crack problem through numerical analysis", Struct. Eng. Mech., Int. J., 57(6), 1143-1156. https://doi.org/10.12989/sem.2016.57.6.1143
- Zhang, X.P. and Wong, L.N.Y. (2013), "Crack initiation, propagation and coalescence in rock-like material containing two flaws: a numerical study based on bonded-particle model approach", Rock Mech. Rock Eng., 46(5), 1001-1021. https://doi.org/10.1007/s00603-012-0323-1
- Zhang, H., He, Y., Han, L., Jiang, B., Liang, Z. and Zhong, S. (2009), "Microfracturing characteristics in brittle material containing structural defects under biaxial loading", Comput. Mater. Sci., 46(3), 682-686. https://doi.org/10.1016/j.commatsci.2009.05.015
- Zhang, J.Z., Zhou, X.P., Zhou, L.S. and Berto, F. (2019), "Progressive failure of brittle rocks with non-isometric flaws: Insights from acousto-optic-mechanical (AOM) data", Fatigue Fract. Eng. Mater. Struct., 42(8), 1787-1802. https://doi.org/10.1111/ffe.13019
- Zhou, X.P., Bi, J. and Qian, Q.H. (2015), "Numerical simulation of crack growth and coalescence in rock-like materials containing multiple pre-existing flaws", Rock Mech. Rock Eng., 48, 1097-1114. https://doi.org/10.1007/s00603-014-0627-4
- Zhou, X., Wang, Y. and Xu, X. (2016), "Numerical simulation of initiation, propagation and coalescence of cracks using the nonordinary state-based peridynamics", Int. J. Fract., 201(2), 213-234. https://doi.org/10.1007/s10704-016-0126-6
- Zhou, X.P., Zhang, J.Z., Qian, Q.H. and Niu, Y. (2019), "Experimental investigation of progressive cracking processes in granite under uniaxial loading using digital imaging and AE techniques", J. Struct. Geol., 126, 129-145. https://doi.org/10.1016/j.jsg.2019.06.003
- Zhou, X.P., Zhang, J.Z. and Berto, F. (2020), "Fracture analysis in brittle sandstone by digital imaging and AE techniques: Role of flaw length ratio", J. Mater. Civil Eng., 32(5), 04020085. https://doi.org/10.1061/(ASCE)MT.1943-5533.0003151
Cited by
- Influence of non-persistent joint sets on the failure behaviour of concrete under uniaxial compression test vol.28, pp.3, 2021, https://doi.org/10.12989/cac.2021.28.3.289