과제정보
This work was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (No. 2020R1I1A3073577) and the Korea Institute of Planning and Evaluation for Technology in Food, the Agriculture and Forestry(IPET) and the Korea Smart Farm R&D Foundation through Smart Farm Innovation Technology Development Program funded by the Ministry of Agriculture, Food and Rural Affairs(MAFRA), the Ministry of Science and ICT(MSIT) and the Rural Development Administration(RDA) (421016041HD030).
참고문헌
- Anirudh, B., Ben Zineb, T., Polit, O., Ganapathi, M. and Prateek, G. (2020), "Nonlinear bending of porous curved beams reinforced by functionally graded nanocomposite graphene platelets applying an efficient shear flexible finite element approach", Int. J. Nonlin. Mech., 119, 103346. https://doi.org/10.1016/j.ijnonlinmec.2019.103346.
- Attar, F., Khordad, R., Zarifi, A. and Modabberasl, A. (2020), "Application of nonlocal modified couple stress to study of functionally graded piezoelectric plates", Phys. B Condens. Matter., 600, 412623. https://doi.org/10.1016/j.physb.2020.412623.
- Auerkari, P. (1996), "Mechanical and physical properties of engineering alumina ceramics", Technical Research Centre of Finland Espoo.
- Capuano, G. and Rimoli, J.J. (2019), "Smart finite elements: A novel machine learning application", Comput. Meth. Appl. Mech. Eng., 345, 363-381. https://doi.org/10.1016/j.cma.2018.10.046.
- Carpenter, W.C. and Barthelemy, J.F. (1994), "Common misconceptions about neural networks as approximators", J. Comput. Civil Eng., 8, 345-358. https://doi.org/10.1061/(ASCE)0887-3801(1994)8:3(345).
- Chan, D.Q., Van Thanh, N., Khoa, N.D. and Duc, N.D. (2020), "Nonlinear dynamic analysis of piezoelectric functionally graded porous truncated conical panel in thermal environments", Thin Wall. Struct., 154, 106837. https://doi.org/10.1016/j.tws.2020.106837.
- Chen, D., Zheng, S., Wang, Y., Yang, L. and Li, Z. (2020), "Nonlinear free vibration analysis of a rotating two-dimensional functionally graded porous micro-beam using isogeometric analysis", Eur. J. Mech. A/Solid., 84, 104083. https://doi.org/10.1016/j.euromechsol.2020.104083.
- Chu, L., Dui, G. and Zheng, Y. (2020), "Thermally induced nonlinear dynamic analysis of temperature-dependent functionally graded flexoelectric nanobeams based on nonlocal simplified strain gradient elasticity theory", Eur. J. Mech. A/Solid., 82, 103999. https://doi.org/10.1016/j.euromechsol.2020.103999.
- Cong, P.H. and Duc, N.D. (2018), "New approach to investigate the nonlinear dynamic response and vibration of a functionally graded multilayer graphene nanocomposite plate on a viscoelastic Pasternak medium in a thermal environment", Acta Mech., 229, 3651-3670. https://doi.org/10.1007/s00707-018-2178-3.
- Das, S. and Sutradhar, A. (2020), "Multi-physics topology optimization of functionally graded controllable porous structures: Application to heat dissipating problems", Mater. Des., 193, 108775. https://doi.org/10.1016/j.matdes.2020.108775.
- Davis, J.R. and others (1993), Aluminum and Aluminum Alloys, ASM International.
- Do, D.M., Gao, K., Yang, W. and Li, C.Q. (2020a), "Hybrid uncertainty analysis of functionally graded plates via multiple-imprecise-random-field modelling of uncertain material properties", Comput. Meth. Appl. Mech. Eng., 368, 113116. https://doi.org/10.1016/j.cma.2020.113116.
- Do, D.T.T., Nguyen-Xuan, H. and Lee, J. (2020b), "Material optimization of tri-directional functionally graded plates by using deep neural network and isogeometric multimesh design approach", Appl. Math. Model., 87, 501-533. https://doi.org/10.1016/j.apm.2020.06.002.
- Ehyaei, J., Farazmandnia, N. and Jafari, A. (2017), "Rotating effects on hygro-mechanical vibration analysis of FG beams based on Euler-Bernoulli beam theory", Struct. Eng. Mech., 63, 471-480. https://doi.org/10.12989/sem.2017.63.4.471.
- El-Ashmawy, A.M. and Xu, Y. (2020), "Longitudinal modeling and properties tailoring of functionally graded carbon nanotube reinforced composite beams: A novel approach", Appl. Math. Model., 88, 161-174. https://doi.org/10.1016/j.apm.2020.06.043.
- Elmeiche, N., Abbad, H., Mechab, I. and Bernard, F. (2020), "Free vibration analysis of functionally graded beams with variable cross-section by the differential quadrature method based on the nonlocal theory", Struct. Eng. Mech., 75, 737-746. https://doi.org/10.12989/sem.2020.75.6.737.
- Eltaher, M.A. and Akbas, S.D. (2020), "Transient response of 2D functionally graded beam structure", Struct. Eng. Mech., 75, 357-367. https://doi.org/10.12989/sem.2020.75.3.357.
- Esen, I. (2019), "Dynamic response of functional graded Timoshenko beams in a thermal environment subjected to an accelerating load", Eur. J. Mech. A/Solid., 78, 103841. https://doi.org/10.1016/j.euromechsol.2019.103841.
- Ezzin, H., Wang, B. and Qian, Z. (2020), "Propagation behavior of ultrasonic Love waves in functionally graded piezoelectric-piezomagnetic materials with exponential variation", Mech. Mater., 148, 103492. https://doi.org/10.1016/j.mechmat.2020.103492.
- Gruttmann, F. and Wagner, W. (2001), "Shear correction factors in timoshenko's beam theory for arbitrary shaped cross-sections", Comput. Mech., 27, 199-207. https://doi.org/10.1007/s004660100239.
- Hagan, M.T. and Menhaj, M.B. (1994), "Traning feedforward networks with the Marquardt algorithm", IEEE Tran. Neur. Network., 5, 989-993. https://doi.org/10.1109/72.329697.
- Hamed, M.A., Sadoun, A.M. and Eltaher, M.A. (2019), "Effects of porosity models on static behavior of size dependent functionally graded beam", Struct. Eng. Mech., 71, 89-98. https://doi.org/10.12989/sem.2019.71.1.089.
- Hien, T.D. and Noh, H.C. (2017), "Stochastic isogeometric analysis of free vibration of functionally graded plates considering material randomness", Comput. Meth. Appl. Mech. Eng., 318, 845-863. https://doi.org/10.1016/j.cma.2017.02.007.
- Jodaei, A., Jalal, M. and Yas, M.H. (2012), "Free vibration analysis of functionally graded annular plates by state-space based differential quadrature method and comparative modeling by ANN", Compos. Part B Eng., 43, 340-353. https://doi.org/10.1016/j.compositesb.2011.08.052.
- Jung, J., Yoon, K. and Lee, P.S. (2020), "Deep learned finite elements", Comput. Meth. Appl. Mech. Eng., 372, 113401. https://doi.org/10.1016/j.cma.2020.113401.
- Karami, B., Janghorban, M. and Li, L. (2018), "On guided wave propagation in fully clamped porous functionally graded nanoplates", Acta Astronaut., 143, 380-390. https://doi.org/10.1016/j.actaastro.2017.12.011.
- Kim, D., Lee, J., Nomura, T., Dede, E.M., Yoo, J. and Min, S. (2020), "Topology optimization of functionally graded anisotropic composite structures using homogenization design method", Comput. Meth. Appl. Mech. Eng., 369, 113220. https://doi.org/10.1016/j.cma.2020.113220.
- Lee, J.W. and Lee, J.Y. (2017), "Free vibration analysis of functionally graded Bernoulli-Euler beams using an exact transfer matrix expression", Int. J. Mech. Sci., 122, 1-17. https://doi.org/10.1016/j.ijmecsci.2017.01.011.
- Li, Z., Xu, Y. and Huang, D. (2021), "Analytical solution for vibration of functionally graded beams with variable crosssections resting on Pasternak elastic foundations", Int. J. Mech. Sci., 191, 106084. https://doi.org/10.1016/j.ijmecsci.2020.106084.
- Liu, D., Zhou, Y. and Zhu, J. (2021), "On the free vibration and bending analysis of functionally graded nanocomposite spherical shells reinforced with graphene nanoplatelets: Three-dimensional elasticity solutions", Eng. Struct., 226, 111376. https://doi.org/10.1016/j.engstruct.2020.111376.
- Ma, L.S. and Wang, T.J. (2003), "Nonlinear bending and post-buckling of a functionally graded circular plate under mechanical and thermal loadings", Int. J. Solid. Struct., 40, 3311-3330. https://doi.org/10.1016/S0020-7683(03)00118-5.
- Madenci, E. and Gulcu, S. (2020), "Optimization of flexure stiffness of FGM beams via artificial neural networks by mixed FEM", Struct. Eng. Mech., 75, 633-642. https://doi.org/10.12989/sem.2020.75.5.633.
- Masjedi, P.K., Maheri, A. and Weaver, P.M. (2019), "Large deflection of functionally graded porous beams based on a geometrically exact theory with a fully intrinsic formulation", Appl. Math. Model., 76, 938-957. https://doi.org/10.1016/j.apm.2019.07.018.
- Nguyen, K.V., Dao, T.T.B. and Van Cao, M. (2020), "Comparison studies of the receptance matrices of the isotropic homogeneous beam and the axially functionally graded beam carrying concentrated masses", Appl. Acoust., 160, 107160. https://doi.org/10.1016/j.apacoust.2019.107160.
- Oishi, A. and Yagawa, G. (2017), "Computational mechanics enhanced by deep learning", Comput. Meth. Appl. Mech. Eng., 327, 327-351. https://doi.org/10.1016/j.cma.2017.08.040.
- Pan, H. and Song, T. (2017), "Stochastic investigation of the facture problem in functionally graded materials with uncertain mechanical properties and an arbitrarily oriented crack", Theor. Appl. Fract. Mech., 91, 155-165. https://doi.org/10.1016/j.tafmec.2017.07.002.
- Pham, H.A., Truong, V.H. and Tran, M.T. (2020), "Fuzzy static finite element analysis for functionally graded structures with semi-rigid connections", Struct., 26, 639-650. https://doi.org/10.1016/j.istruc.2020.04.036.
- Pines, M.L. and Bruck, H.A. (2006), "Pressureless sintering of particle-reinforced metal-ceramic composites for functionally graded materials: Part I. Porosity reduction models", Acta Mater., 54, 1457-1465. https://doi.org/10.1016/j.actamat.2005.10.060.
- Reddy, J.N. (2003), Mechanics of Laminated Composite Plates and Shells: Theory and Analysis, CRC Press.
- Reddy, J.N., Nampally, P. and Srinivasa, A.R. (2020), "Nonlinear analysis of functionally graded beams using the dual mesh finite domain method and the finite element method", Int. J. Nonlin. Mech., 127, 103575. https://doi.org/10.1016/j.ijnonlinmec.2020.103575.
- Tam, M., Yang, Z., Zhao, S., Zhang, H., Zhang, Y. and Yang, J. (2020), "Nonlinear bending of elastically restrained functionally graded graphene nanoplatelet reinforced beams with an open edge crack", Thin Wall. Struct., 156, 106972. https://doi.org/10.1016/j.tws.2020.106972.
- Thai, S., Thai, H.T., Vo, T.P. and Nguyen-Xuan, H. (2017), "Nonlinear static and transient isogeometric analysis of functionally graded microplates based on the modified strain gradient theory", Eng. Struct., 153, 598-612. https://doi.org/10.1016/j.engstruct.2017.10.002.
- Tran, H.Q., Vu, V.T., Tran, M.T. and Nguyen-Tri, P. (2020), "A new four-variable refined plate theory for static analysis of smart laminated functionally graded carbon nanotube reinforced composite plates", Mech. Mater., 142, 103294. https://doi.org/10.1016/j.mechmat.2019.103294.
- Trinh, M.C. and Kim, S.E. (2018), "Nonlinear thermomechanical behaviors of thin functionally graded sandwich shells with double curvature", Compos. Struct., 195, 335-348. https://doi.org/10.1016/j.compstruct.2018.04.067.
- Trinh, M.C. and Kim, S.E. (2019a), "A three variable refined shear deformation theory for porous functionally graded doubly curved shell analysis", Aerosp. Sci. Technol., 94, 105356. https://doi.org/doi.org/10.1016/j.ast.2019.105356.
- Trinh, M.C. and Kim, S.E. (2019b), "Nonlinear stability of moderately thick functionally graded sandwich shells with double curvature in thermal environment", Aerosp. Sci. Technol., 84, 672-685. https://doi.org/10.1016/j.ast.2018.09.018.
- Trinh, M.C., Mukhopadhyay, T. and Kim, S.E. (2020), "A semi-analytical stochastic buckling quantification of porous functionally graded plates", Aerosp. Sci. Technol., 105, 105928. https://doi.org/10.1016/j.ast.2020.105928.
- Trinh, M.C., Nguyen, D.D. and Kim, S.E. (2019), "Effects of porosity and thermomechanical loading on free vibration and nonlinear dynamic response of functionally graded sandwich shells with double curvature", Aerosp. Sci. Technol., 87, 119-132. https://doi.org/10.1016/j.ast.2019.02.010.
- Vaishali, Mukhopadhyay, T., Karsh, P.K., Basu, B. and Dey, S. (2020), "Machine learning based stochastic dynamic analysis of functionally graded shells", Compos. Struct., 237, 111870. https://doi.org/10.1016/j.compstruct.2020.111870.
- Wang, Q., Li, Q., Wu, D., Yu, Y., Tin-Loi, F., Ma, J. and Gao, W. (2020), "Machine learning aided static structural reliability analysis for functionally graded frame structures", Appl. Math. Model., 78, 792-815. https://doi.org/10.1016/j.apm.2019.10.007.
- Wilamowski, B.M., Chen, Y. and Malinowski, A. (1999), "Efficient Algorithm for Training Neural Networks with one Hidden Layer", International Joint Conference on Neural Networks. Proceedings (Cat. No. 99CH36339), 1725-1728. https://doi.org/10.1109/IJCNN.1999.832636.
- Yang, Y. and Liu, Y. (2020), "A new boundary element method for modeling wave propagation in functionally graded materials", Eur. J. Mech. A/Solid., 80, 103897. https://doi.org/10.1016/j.euromechsol.2019.103897.
- Zenkour, A.M. and Aljadani, M.H. (2020), "Buckling analysis of actuated functionally graded piezoelectric plates via a quasi-3D refined theory", Mech. Mater., 151, 103632. https://doi.org/10.1016/j.mechmat.2020.103632.
- Zhang, Y.W., Chen, W.J., Ni, Z.Y., Zang, J. and Hou, S. (2020), "Supersonic aerodynamic piezoelectric energy harvesting performance of functionally graded beams", Compos. Struct., 233, 111537. https://doi.org/10.1016/j.compstruct.2019.111537.
- Zhou, Y. and Zhang, X. (2019), "Natural frequency analysis of functionally graded material beams with axially varying stochastic properties", Appl. Math. Model., 67, 85-100. https://doi.org/10.1016/j.apm.2018.10.011.
- Zhu, L.F., Ke, L.L., Xiang, Y., Zhu, X.Q. and Wang, Y.S. (2020), "Vibrational power flow analysis of cracked functionally graded beams", Thin Wall. Struct., 150, 106626. https://doi.org/10.1016/j.tws.2020.106626.