DOI QR코드

DOI QR Code

통화정책 결정문에 나타난 한미 통화정책 동조화 현상 분석

Monetary policy synchronization of Korea and United States reflected in the statements

  • 장영재 (한국방송통신대학교 통계.데이터과학과)
  • Chang, Youngjae (Department of Statistics and Data Science, Korea National Open University)
  • 투고 : 2020.11.16
  • 심사 : 2020.11.29
  • 발행 : 2021.02.28

초록

중앙은행은 통화정책을 운용하면서 통화정책 방향에 관한 보고서를 통해 시장과 소통하고 있다. 최근의 Covid-19 팬데믹은 세계적인 경제의 급격한 위축을 초래하였다. 2008년 글로벌 금융위기 시와 비교해 보더라도 불확실성이 적지 않은 상황이다. 그 파급효과가 전 세계적으로 확산되면서 경기침체의 장기화에 관한 우려도 증폭되고 있다. 본 논문에서는 미 연준과 한국은행의 통화정책을 담고 있는 통화정책방향 결정문과 의결문의 특징을 분석하고 세계적인 위기에 어떠한 영향을 받았는지 살펴보았다. 분석을 위해 1999년 10월부터 2020년 9월까지 공표된 양 국가의 통화정책방향 보고서 텍스트 자료를 수집하였으며 워드 클라우드 및 워드 임베딩 등을 이용하여 의미상 특징을 살펴보았다. 조각별 회귀나무 모형을 통해 양국 문서의 비유사성 추이도 분석해 보았다. 분석 결과 한국은행과 미 연준 모두 시장과의 투명하고 효과적인 소통을 위해 명확한 의미를 지닌 단어로 정제된 문서 자료를 작성하고 있는 것으로 나타났다. 또한, 급격한 글로벌 경제환경의 변화가 통화정책에 영향을 미치면서 문서 간 의미상 동조화가 이루진 것으로 나타났다.

Central banks communicate with the market through a statement on the direction of monetary policy while implementing monetary policy. The rapid contraction of the global economy due to the recent Covid-19 pandemic could be compared to the crisis situation during the 2008 global financial crisis. In this paper, we analyzed the text data from the monetary policy statements of the Bank of Korea and Fed reflecting monetary policy directions focusing on how they were affected in the face of a global crisis. For analysis, we collected the text data of the two countries' monetary policy direction reports published from October 1999 to September 2020. We examined the semantic features using word cloud and word embedding, and analyzed the trend of the similarity between two countries' documents through a piecewise regression tree model. The visualization result shows that both the Bank of Korea and the US Fed have published the statements with refined words of clear meaning for transparent and effective communication with the market. The analysis of the dissimilarity trend of documents in both countries also shows that there exists a sense of synchronization between them as the rapid changes in the global economic environment affect monetary policy.

키워드

참고문헌

  1. Board of Governors of the Federal Reserve System, http://www.federalreserve.gov/monetarypolicy/default.htm
  2. Breiman, L., Friedman, J. H., Olshen, R. A., and Stone, C. J. (1984). Classification and Regression Trees, Wadsworth, Belmont, CA.
  3. Chang, Y. and Kim, H. (2011). Tree-structured nonlinear regression, The Korean Journal of Applied Statistics, 24, 759-768. https://doi.org/10.5351/KJAS.2011.24.5.759
  4. Chang, Y. (2020). The asymmetry of economic perceptions analyzed with business survey index, Journal of the Korean Data Analysis Society, 22, 1863-1874. https://doi.org/10.37727/jkdas.2020.22.5.1863
  5. Choi, J., Han, H. S., Lee, M. Y., and Ahn, J. M. (2015). The prediction of corporate bankruptcy using text-mining methodology, Productivity Review, 29, 201-228. https://doi.org/10.15843/kpapr.29.1.201503.201
  6. FRED, Federal Reserve Bank of St. Louis Economic Data, https://fred.stlouisfed.org/
  7. Loh, W. Y. (2002). Regression trees with unbiased variable selection and interaction detection, Statistica Sinica, 12, 361-386.
  8. Loh, W. Y. (2008). Regression by parts: Fitting visually interpretable models with GUIDE, Handbook of Computational Statistics, III, 447-469, Springer.
  9. Loh, W. Y. (2014). Fifty years of classification and regression trees (with discussion), International Statistical Review, 34, 329-370. https://doi.org/10.1111/insr.12016
  10. Shin, D. H. and Kim, C. B. (2016). Query extension of retrieve system using hangul word embedding and apriori, The Journal of Korea Navigation Institute, 20, 671-624.
  11. Son, B. E. and Ko, H. K. (2018). The frequency analysis of teacher's emotional response in mathematics class, Communications of Mathematical Education, 32, 555-573. https://doi.org/10.7468/JKSMEE.2018.32.4.555
  12. Pennington, J., Socher, R., and Manning, C. D. (2013). Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), 1532-1543.
  13. The Bank of Korea, https://www.bok.or.kr/eng/bbs/E0000627/list.do?menuNo=400022
  14. Woo, S. and Chang, Y. (2016). An analysis of FOMC statements by text mining methods, Journal of the Korean Data Analysis Society, 18, 179-188.