DOI QR코드

DOI QR Code

Preparation and Release Properties of Acetaminophen Imprinted Functional Starch based Biomaterials for Transdermal Drug Delivery

경피약물전달을 위한 아세트아미노펜 각인 기능성 전분 기반 바이오 소재 제조 및 방출 특성

  • Kim, Han-Seong (Department of Biomolecular and Chemical Engineering, Chonnam National University) ;
  • Kim, Kyeong-Jung (Department of Biomolecular and Chemical Engineering, Chonnam National University) ;
  • Lee, Si-Yeon (Department of Biomolecular and Chemical Engineering, Chonnam National University) ;
  • Cho, Eun-Bi (Department of Biomolecular and Chemical Engineering, Chonnam National University) ;
  • Kang, Hyun-Wook (Department of Mechanical Engineering, Chonnam National University) ;
  • Yoon, Soon-Do (Department of Biomolecular and Chemical Engineering, Chonnam National University)
  • 김한성 (전남대학교 화공생명공학과) ;
  • 김경중 (전남대학교 화공생명공학과) ;
  • 이시연 (전남대학교 화공생명공학과) ;
  • 조은비 (전남대학교 화공생명공학과) ;
  • 강현욱 (전남대학교 기계공학부) ;
  • 윤순도 (전남대학교 화공생명공학과)
  • Received : 2021.04.05
  • Accepted : 2021.04.26
  • Published : 2021.06.10

Abstract

This study focuses on the preparation of acetaminophen (AP) imprinted functional biomaterials for a transdermal drug delivery using mung bean starch (MBS), polyvinyl alcohol (PVA), sodium benzoate (S) as a crosslinking agent, glycerol (GL) as a plasticizer, and melanin (MEL) as a photothermal agent. The prepared AP imprinted biomaterials were characterized using FE-SEM and their physical properties were evaluated. The photothermal effect and AP release property for functional biomaterials were examined with the irradiation of near infrared (NIR) laser (1.5 W/cm2). When the NIR laser was irradiated on functional biomaterials with/without the addition of MEL, the temperature of MEL added biomaterial increased from 25 ℃ to 41 ℃, whereas the biomaterial without MEL increased from 25 ℃ to 28 ℃. Results indicate that there is the photothermal effect of prepared biomaterial with the addition of MEL. Based on the results, AP release properties were evaluated using standard buffer solutions and artificial skin. It was found that AP release rates of MEL added AP loaded biomaterials were 1.2 times faster than those of MEL non-added AP loaded biomaterials when irradiating with NIR laser. We envision that the developed functional biomaterials can be utilized for an acute pain-killing treatment.

본 연구에서는 mung bean starch (MBS), polyvinyl alcohol (PVA), sodium benzoate (S), glycerol (GL), melanin (MEL)을 이용하여 광열 효과가 있는 기능성 acetaminophen (AP) 각인 MBS 기반 바이오 소재를 제조하고 약물 방출 특성을 조사하였다. 제조된 AP 각인 바이오 소재의 물리화학적 특성은 FE-SEM과 FT-IR을 통해 분석하였다. 또한, NIR (near infrared) laser (1.5 W/cm2) 조사에 따른 기능성 바이오 소재의 광열 효과 및 AP 방출 특성을 조사하였다. 바이오 소재에 NIR laser를 조사하였을 때, MEL이 첨가 바이오 소재는 첨가하지 않은 바이오 소재보다 2배 이상 높은 온도상승을 보였다. 표준 버퍼 용액과 인공 피부를 사용하여 기능성 AP 각인 바이오 소재의 AP 방출 특성 조사결과, NIR laser를 조사하였을 때, MEL 첨가 바이오 소재는 첨가하지 않은 바이오 소재보다 AP 방출율이 1.2배 높은 것을 확인하였다. 이 결과로부터, 기능성 바이오 소재는 급성 진통 치료를 위한 바이오 소재로 활용될 수 있을 것으로 판단된다.

Keywords

Acknowledgement

이 논문은 2019년도 정부(교육부)의 재원으로 한국연구재단의 지원을 받아 수행된 기초연구사업(Grant No. NRF- 2019R1I1A3A01061508)에 의해 수행하였음.

References

  1. F. F. Azhar, A. Olad, and A. Mirmohseni, Development of novel hybrid nanocomposites based on natural biodegradable polymer-montmorillonite/polyaniline: Preparation and characterization, Polym. Bull., 71(7), 1591-1610 (2014). https://doi.org/10.1007/s00289-014-1143-0
  2. H. Y. Tak, Y. H. Yun, C. M. Lee, and S. D. Yoon, Sulindac imprinted mungbean starch/PVA biomaterial films as a transdermal drug delivery patch, Carbohydr. Polym., 208, 261-268 (2019). https://doi.org/10.1016/j.carbpol.2018.12.076
  3. S. H. Hsu, K. C. Hung, and C. E. Chen, Biodegradable polymer scaffolds, J. Mater. Chem. B, 4(47), 7493-7505 (2016). https://doi.org/10.1039/C6TB02176J
  4. S. Banerjee, P. Chattopadhyay, A. Ghosh, P. Datta, and V. Veer, Aspect of adhesives in transdermal drug delivery systems, Int. J. Adhes. Adhes., 50, 70-84 (2014). https://doi.org/10.1016/j.ijadhadh.2014.01.001
  5. B. V. Bochove and D. W. Grijpma, Photo-crosslinked synthetic biodegradable polymer networks for biomedical applications, J. Biomater. Sci-Polym. Ed., 30(2), 77-106 (2019). https://doi.org/10.1080/09205063.2018.1553105
  6. K. Hamad, M. Kaseem, Y. G. Ko, and F. Deri, Biodegradable polymer blends and composites: An overview, Polym. Sci. Ser. A, 56(6), 812-829 (2014). https://doi.org/10.1134/S0965545X14060054
  7. L. S. Nair and C. T. Laurencin, Biodegradable polymers as biomaterials, Prog. Polym. Sci., 32(8-9), 762-798 (2007). https://doi.org/10.1016/j.progpolymsci.2007.05.017
  8. H. Almasi, B. Ghanbarzadeh, and A. A. Entezami, Physicochemical properties of starch-CMC-nanoclay biodegradable films, Int. J. Biol. Macromol., 46(1), 1-5 (2010). https://doi.org/10.1016/j.ijbiomac.2009.10.001
  9. D. R. Lu, C. M. Xiao, and S. J. Xu, Starch-based completely biodegradable polymer materials, Express Polym. Lett., 3(6), 366-375 (2009). https://doi.org/10.3144/expresspolymlett.2009.46
  10. N. Reddy and Y. Yang, Citric acid cross-linking of starch films, Food Chem., 118(3), 702-711 (2010). https://doi.org/10.1016/j.foodchem.2009.05.050
  11. C. Wu, P. Jiang, W. Li, H. Guo, J. Wang, J. Chen, M. R. Prausnitz, and Z. L. Wang, Self-powered iontophoretic transdermal drug delivery system driven and regulated by biomechanical motions, Adv. Funct. Mater., 30(3), 1907378 (2020). https://doi.org/10.1002/adfm.201907378
  12. M. Azmana, S. Mahmood, A. R. Hilles, U. K. Mandal, K. A. S. Al-Japairai, and S. Raman, Transdermal drug delivery system through polymeric microneedle: A recent update, J. Drug Deliv. Sci. Technol., 101877 (2020).
  13. X. Zhou, Y. Hao, L. Yuan, S. Pradhan, K. Shrestha, O. Pradhan, H. Liu, and W. Li, Nano-formulations for transdermal drug delivery: A review, Chin. Chem. Lett., 29(12), 1713-1724 (2018). https://doi.org/10.1016/j.cclet.2018.10.037
  14. H. S. Kim, K. J. Kim, M. W. Lee, S. Y. Lee, Y. H. Yun, W. G. Shim, and S. D. Yoon, Preparation and release properties of arbutin imprinted inulin/polyvinyl alcohol biomaterials, Int. J. Biol. Macromol., 161, 763-770 (2020). https://doi.org/10.1016/j.ijbiomac.2020.06.105
  15. Y. Li and S. M. Chen, The electrochemical properties of acetaminophen on bare glassy carbon electrode, Int. J. Electrochem. Sci., 7(3), 2175-2187 (2012).
  16. E. B. Lim, T. A. Vy, and S. W. Lee, Comparative release kinetics of small drugs (ibuprofen and acetaminophen) from multifunctional mesoporous silica nanoparticles, J. Mater. Chem. B, 8(10), 2096-2106 (2020). https://doi.org/10.1039/c9tb02494h
  17. S. Abid, T. Hussain, A. Nazir, A. Zahir, and N. Khenoussi, Acetaminophen loaded nanofibers as a potential contact layer for pain management in Burn wounds, Mater. Res. Express, 5(8), 085017 (2018). https://doi.org/10.1088/2053-1591/aad2eb
  18. M. Kim, H. S. Kim, M. A. Kim, H. Ryu, H. J. Jeong, and C. M. Lee, Thermohydrogel containing melanin for photothermal cancer therapy, Macromol. Biosci., 17(5), (2017).
  19. Y. Liu, K. Ai, J. Liu, M. Deng, Y. He, and L. Lu, Dopamine-melanin colloidal nanospheres: An efficient near-infrared photothermal therapeutic agent for in vivo cancer therapy, Adv. Mater., 25(9), 1353-1359 (2013). https://doi.org/10.1002/adma.201204683
  20. S. Roy and J. W. Rhim, Preparation of carrageenan-based functional nanocomposite films incorporated with melanin nanoparticles, Colloid Surf. B-Biointerfaces, 176, 317-324 (2019). https://doi.org/10.1016/j.colsurfb.2019.01.023
  21. H. S. Kim, Y. H. Yun, W. G. Shim, and S. D. Yoon, Preparation and evaluation of functional allopurinol imprinted starch based biomaterials for transdermal drug delivery, Int. J. Biol. Macromol., 175, 217-228 (2021). https://doi.org/10.1016/j.ijbiomac.2021.02.004
  22. S. Sajjan, G. Kulkarni, V. Yaligara, K. Lee, and T. B. Karegoudar, Purification and physiochemical characterization of melanin pigment from Klebsiella sp. GSK, J. Microbiol. Biotechnol., 20(11), 1513-1520 (2010). https://doi.org/10.4014/jmb.1002.02006
  23. J. Stainsack, A. S. Mangrich, C. M. Maia, V. G. Machado, J. C. dos Santos, and S. Nakagaki, Spectroscopic investigation of hard and soft metal binding sites in synthetic melanin, Inorg. Chim. Acta, 356, 243-248 (2003). https://doi.org/10.1016/S0020-1693(03)00474-2
  24. A. S. El-Shahawy, S. M. Ahmed, and N. K. Sayed, INDO/SCF-CI calculations and structural spectroscopic studies of some complexes of 4-hydroxyacetanilide, Spectrochim. Acta A-Mol. Biomol. Spectrosc., 66(1), 143-152 (2007). https://doi.org/10.1016/j.saa.2006.02.034
  25. I. G. Binev, P. Vassileva-Boyadjieva, and Y. I. Binev, Experimental and ab initio MO studies on the IR spectra and structure of 4-hydroxyacetanilide (paracetamol), its oxyanion and dianion, J. Mol. Struct., 447(3), 235-246 (1998). https://doi.org/10.1016/S0022-2860(98)00302-0