DOI QR코드

DOI QR Code

Investigating the effect of edge crack on the modal properties of composite wing using dynamic stiffness matrix

  • Torabi, Ali Reza (Fracture Research Laboratory, Faculty of New Science and Technologies, University of Tehran) ;
  • Shams, Shahrokh (Faculty of New Sciences and Technologies, University of Tehran) ;
  • Fatehi-Narab, Mahdi (Faculty of New Sciences and Technologies, University of Tehran)
  • Received : 2020.01.15
  • Accepted : 2021.04.20
  • Published : 2021.06.10

Abstract

In this study free vibration analysis of a cracked Goland composite wing is investigated. The wing is modelled as a cantilevered beam based on Euler- Bernoulli equations. Also, composite material is modelled based on lamina fiber-reinforced. Edge crack is modelled by additional boundary conditions and local flexibility matrix in crack location, Castigliano's theorem and energy release rate formulation. Governing differential equations are extracted by Hamilton's principle. Using the separation of variables method, general solution in the normalized form for bending and torsion deflection is achieved then expressions for the cross-sectional rotation, the bending moment, the shear force and the torsional moment for the cantilevered beam are obtained. The cracked beam is modelled by separation of beam into two interconnected intact beams. Free vibration analysis of the beam is performed by applying boundary conditions at the fixed end, the free end, continuity conditions in the crack location of the beam and dynamic stiffness matrix determinant. Also, the effects of various parameters such as length and location of crack and fiber angle on natural frequencies and mode shapes are studied. Modal analysis results illustrate that natural frequencies and mode shapes are affected by depth and location of edge crack and coupling parameter.

Keywords

References

  1. Ashour, A.S. (2003), "Buckling and vibration of symmetric laminated composite plates with edges elastically restrained", Steel Compos. Struct., 3(6), 439-450. https://doi.org/10.12989/scs.2003.3.6.439.
  2. Banerjee, J.R. (2001), "Explicit analytical expressions for frequency equation and mode shapes of composite beams", Int. J. Solids. Struct., 38(14), 2415-2426. https://doi.org/10.1016/S0020-7683(00)00100-1.
  3. Banerjee, J.R. and Su, H. (2006), "Dynamic stiffness formulation and free vibration analysis of a spinning composite beam", Comput. Struct., 84(19), 1208-1214. https://doi.org/10.1016/j.compstruc.2006.01.023.
  4. Banerjee, J.R. and Williams, F.W. (1995), "Free Vibration of composite beams-an exact method using symbolic computation", J. Aircraft, 32(3), 636-642. https://doi.org/10.2514/3.46767.
  5. Banerjee, J.R., Su, H. and Jayatunga, C. (2008), "A dynamic stiffness element for free vibration analysis of composite beams and its application to aircraft wings", Comput. Struct., 86(6), 573-579. https://doi.org/10.1016/j.compstruc.2007.04.027.
  6. Boscolo, M. and Banerjee, J.R. (2012), "Dynamic stiffness formulation for composite Mindlin plates for exact modal analysis of structures. Part I: Theory", Comput. Struct., 96(97), 61-73. https://doi.org/10.1016/j.compstruc.2012.01.002.
  7. Boscolo, M. and Banerjee, J.R. (2012), "Dynamic stiffness formulation for composite Mindlin plates for exact modal analysis of structures. Part II: Results and applications", Comput. Struct., 96(97), 74-83. https://doi.org/10.1016/j.compstruc.2012.01.003.
  8. Chronopoulos, D., Troclet, B., Bareille, O. and Ichchou, M. (2013). "Modeling the response of composite panels by a dynamic stiffness approach". Compos. Struct., 96, 111-120. https://doi.org/10.1016/j.compstruct.2012.08.047.
  9. Daneshmehr, A., Nateghi, A. and Inman, D.J. (2013), "Free vibration analysis of cracked composite beams subjected to coupled bending-torsion loads based on a first order shear deformation theory", Appl. Math. Model., 37(24), 10074-10091. https://doi.org/10.1016/j.apm.2013.05.062.
  10. Demir, E. (2016), "A study on natural frequencies and damping ratios of composite beams with holes", Steel Compos. Struct., 21(6), 1211-1226. https://doi.org/10.12989/scs.2016.21.6.1211.
  11. Erdelyi, N.H. and Hashemi, S.M. (2016), "On the finite element free vibration analysis of delaminated layered beams: a new assembly technique", J. Shock. Vib., 2016, 1-14. http://dx.doi.org/10.1155/2016/3707658.
  12. Hodges, D.H., Atilgan, A.R., Fulton, M.V. and Rehfied, L.W. (1991), "Free-vibration analysis of composite beams", J. Am. Helicopter Soc., 36(3), 36-47. https://doi.org/10.4050/JAHS.36.36.
  13. Jafari-Talookolaei, R. A. (2015), "Analytical solution for the free vibration characteristics of the rotating composite beams with a delamination", Aerosp. Sci. Technol., 45, 346-358. https://doi.org/10.1016/j.ast.2015.06.009.
  14. Kashani, M.T. and Hashemi, S.M. (2018), "A finite element formulation for bending-torsion coupled vibration analysis of delaminated beams under combined axial load and end moment", J. Shock. Vib., 2018, 1-12. https://doi.org/10.1155/2018/1348970.
  15. Kim, N.I. (2009), "Dynamic stiffness matrix of composite box beams", Steel Compos. Struct., 9(5), 473-497. https://doi.org/10.12989/scs.2009.9.5.473.
  16. Krawczuk, M. and Ostachowicz, W.M. (1995), "Modelling and vibration analysis of a cantilever composite beam with a transverse open crack", J. Sound Vib., 138(1), 69-89. https://doi.org/10.1006/jsvi.1995.0239.
  17. Lee, J. (2000), "Free vibration analysis of delaminated composite beams", Comput. Struct., 74(2), 121-129. https://doi.org/10.1016/S0045-7949(99)00029-2.
  18. Ling, Z., Chen,J., Yinong, Y. and Ziqiang, L. (2015), "Flutter influence mode analysis of high speed wing model", Procedia Eng., 99, 33-38. https://doi.org/10.1016/j.proeng.2014.12.504.
  19. Liu, Y. and Shu, D.W. (2014), "Coupled bending-torsion vibration of a homogeneous beam with a single delamination subjected to axial loads and static end moments", Acta Mechanica Sinica, 30, 607-614. https://doi.org/10.1007/s10409-014-0039-4.
  20. Liu, Y., Xiao, J. and Shu, D. (2014), "Free Vibration of Delaminated Beams with an Edge Crack", Procedia Eng., 75, 78-82. https://doi.org/10.1016/j.proeng.2013.11.016.
  21. Meirovitch, L. and Silverberg, L.M. (1984), "Active vibration suppression of a cantilever wing", J. Sound Vib., 97(3), 489-498. https://doi.org/10.1016/0022-460X(84)90274-8.
  22. Minguet, P.J. (1989), "Static and dynamic behaviour of composite helicopter rotor blades under large deflections", Ph.D. Dissertation, Massachusetts Institute of Technology, Massachusetts. http://hdl.handle.net/1721.1/40146.
  23. Mujumdar, P.M. and Suryanarayan, S. (1988), "Flexural vibrations of beams with delaminations", J. Sound Vib., 125(3), 441-461.https://doi.org/10.1016/0022-460X(88)90253-2.
  24. Shen, M.H.H. and Grady J.E. (1992), "Free vibrations of delaminated beams", AIAA J., 30(5), 1361-1370. https://doi.org/10.2514/3.11072.
  25. Shiau, L.C. (1992), "Flutter of composite laminated beam plates with delamination", AIAA J., 30(10), 2504-2511. https://doi.org/10.2514/3.11253.
  26. Shu, D. and Della C.N. (2004), "Free vibration analysis of composite beams with two non-overlapping delaminations", Int. J. Mech. Sci., 46(4), 509-526. https://doi.org/10.1016/j.ijmecsci.2004.05.008.
  27. Song, O. and Librescu, L. (1991), "Free vibration and aero-elastic divergence of aircraft wings modelled as composite thin-walled beams", Proceedings of the 32nd Structures, Structural Dynamics, and Materials Conference, Baltimore, MD, U.S.A., April. https://doi.org/10.2514/6.1991-1187.
  28. Song, O., Ha, T. and Librescu, L. (2003), "Dynamics of anisotropic composite cantilevers weakened by multiple transverse open cracks", Eng. Fract. Mech., 70(1), 105-123. https://doi.org/10.1016/S0013-7944(02)00022-X.
  29. Sousa, K., Domingues, A.C., Pereira, P., Carneiro, S.H., Morais, M.V. and Fabro, A.T. (2016) "Modal parameter determination of a lightweight aerospace panel using laser doppler vibrometer measurements". In AIP Conference Proceedings (Vol. 1740, No. 1, p. 070006). Ancona, Italy, June. https://doi.org/10.1063/1.4952683.
  30. Strganac, T.W. and Kim, Y. (1996), "Aeroelastic behavior of composite plates subject to damage growth", J. Aircraft, 33(1), 68-73. https://doi.org/10.2514/3.46904.
  31. Wang, K. (2004), "Vibration analysis of cracked composite bending-torsion beams for damage diagnosis", Ph.D. Dissertation, Virginia Polytechnic Institute and State University, Virginia. http://hdl.handle.net/10919/29891.
  32. Wang, K. and Inman, D. (2007), "Crack-induced effects on aero-elasticity of an un-swept composite wing", AIAA J., 45(3), 542-551. https://doi.org/10.2514/1.21689.
  33. Wang, K., Inman, D.J. and Farrar, C.R. (2005), "Crack-induced changes in divergence and flutter of cantilevered composite panels", Struct. Health Monit., 4(4), 377-392. https://doi.org/10.1177/1475921705057977.
  34. Weisshaar, T.A. and Foist, B.L. (1985), "Vibration tailoring of advanced composite lifting surfaces", J. Aircraft, 22(2), 141-147. https://doi.org/10.2514/3.45098.
  35. Worden, K. and Barton, J.M.D. (2004), "An overview of intelligent fault detection in systems and structures", Struct. Health Monit., 3(1), 85-98. https://doi.org/10.1177/1475921704041866.