DOI QR코드

DOI QR Code

Modified K&C Model for Numerical Analysis of Steel-Fiber-Reinforced Concrete Structure

강섬유 보강 콘크리트 구조물의 해석을 위한 K&C모델의 보정

  • Park, Gang-Kyu (Structural Engineering Research Division, Korea Institute of Civil Engineering and Building Technology) ;
  • Lee, Minjoo (Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology)
  • 박강규 (한국건설기술연구원 인프라안전연구본부) ;
  • 이민주 (한국과학기술원 건설 및 환경공학과)
  • Received : 2020.11.30
  • Accepted : 2020.12.22
  • Published : 2021.04.30

Abstract

This paper introduces a modified Karagozian & Case concrete model (K&C model) for the numerical analysis of a steel-fiber-reinforced concrete (SFRC) structure subjected to projectile impact. The original K&C model was calibrated to consider the effects of steel fibers accurately by modifying the strength surfaces and input parameters. Single element tests were then conducted and compared with uniaxial and triaxial compressive data to verify the modified model. With the application of a dynamic increase factor, the finite element model of the SFRC structure subjected to projectile impact was constructed. Thereafter, the applicability of the modified material model was examined by comparisons with the experimental results.

본 연구에서는 섬유보강콘크리트(SFRC) 구조물의 수치해석을 위한 K&C모델의 보정기법을 소개하였다. SFRC 1축 및 3축 압축강도 실험결과를 기반으로 보정을 수행하였으며, 단일요소 해석결과를 실험결과와 비교함으로써 보정 기법의 검증을 수행하였다. 또한, 변형률 속도의 영향을 반형하기 위해 동적증가계수(DIF)를 고려하여 SFRC 구조물의 발사체 관통해석을 수행함으로써 보정기법의 적용 가능성을 확인하였다.

Keywords

Acknowledgement

이 논문은 2019년도 정부(교육부)의 재원으로 한국연구재단의 지원을 받아 수행된 기초연구사업임(No. NRF-2019R1A6A3A03034028).

References

  1. Abbass, W., Khan, M.I., Mourad, S. (2018) Evaluation of Mechanical Properties of Steel Fiber Reinforced Concrete with Different Strengths of Concrete, Constr. & Build. Mater., 168, pp.556~569. https://doi.org/10.1016/j.conbuildmat.2018.02.164
  2. Afroughsabet, V., Biolzi, O., Ozbakkaloglu, T. (2016) High-Performance Fiber-Reinforced Concrete: A Review, J. Mater. Sci., 51, pp.6517~6551. https://doi.org/10.1007/s10853-016-9917-4
  3. Bencardino, F., Lizzuti, L., Spadea, G., Swamy, R.N. (2008) Stress-Strain Behavior of Steel Fiber-Reinforced Concrete in Compression, J. Mater. Civ. Eng., 20, pp.255~263. https://doi.org/10.1061/(ASCE)0899-1561(2008)20:3(255)
  4. Chen, J.C., Yang, H.J., Chen, H.W. (1992) Behavior of Steel Fiber Reinforced Concrete in Multiaxial Loading, ACI Mater. J., 89, pp.32~40.
  5. Crawford, J., Wu, Y., Choi, H., Magallanes, J., Lan, S. (2012) Use and Validation of the ReleaseIII K&C Concrete Material Model in Ls-Dyna, Karagozian & Case.
  6. Farnam, Y., Moosavi, M., Shekarchi, M., Babanajad, S.K., Bagherzadeh, A. (2010) Behavior of Slurry Infiltrated Fiber Concrete (SIFCON) under Triaxial Compression, Cement & Concr. Res., 40, pp.1571~1581. https://doi.org/10.1016/j.cemconres.2010.06.009
  7. Gholampour, A., Ozbakkaloglu, T. (2018) Fiber-Reinforced Concrete Containing Ultra High-Strength Micro Steel Fibers under Active Confinement, Constr. & Build. Mater., 187, pp.299~306. https://doi.org/10.1016/j.conbuildmat.2018.07.042
  8. Hong, J., Fang, Q., Chen, L., Kong, X. (2017) Numerical Predictions of Concrete Slabs under Contact Explosion by Modified K&C Material Model, Constr. & Build. Mater., 155, 1013~1024. https://doi.org/10.1016/j.conbuildmat.2017.08.060
  9. Kong, X., Fang, Q., Li, Q.M., Wu, H., Crawford, J.E. (2017) Modified K&C Model for Ccratering and Scabbing of Concrete Slabs under Projectile Impact, Int. J. Impact Eng., 108, pp.217~228. https://doi.org/10.1016/j.ijimpeng.2017.02.016
  10. Lai, J., Yang, H., Wang, H., Zheng, X., Wang, Q. (2018) Properties and Modeling of Ultra-High-Performance Concrete Subjected to Multiple Bullet Impacts, J. Mater. Civ. Eng., 30, pp.1~11.
  11. Li, J., Zhang, Y.X. (2011) Evolution and Calibrration of a Numerical Model for Modelling of Hybrid-Fibre ECC Panels under High-Velocity Impact, Compos. Struct., 93, pp.2714~2722. https://doi.org/10.1016/j.compstruct.2011.05.033
  12. Libre, N.A., Shekarchi, M., Mahoutian, M., Soroushian, P. (2011) Mechanical Properties of Hybrid Fiber Reinforced Lightweight Aggregate Concrete Made with Natural Pumice, Constr. & Build. Mater., 25, pp.2458~2464. https://doi.org/10.1016/j.conbuildmat.2010.11.058
  13. Lin, X. (2018) Numerical Simulation of Blast Responses of UltraHigh Performance Fibre Reinforced Concrete Panels with Wtrain-Rate Effect, Constr. & Build. Mater., 176, pp.371~382. https://doi.org/10.1016/j.conbuildmat.2018.05.066
  14. Lin, X., Gravina, R.J. (2017) An Effective Numerical Model for Reinforced Concrete Beams Strengthened with High Performance Fibre Reinforced Cementitious Composites, Mater. & Struct., 50, pp.1~13. https://doi.org/10.1617/s11527-016-0885-6
  15. Malvar, L.J., Crawford, J.E., Wesevich, J.W., Simons, D. (1997) A Plasticity Concrete Material Model For Dyna3D, Int. J. Impact Eng., 19, pp.847~873. https://doi.org/10.1016/S0734-743X(97)00023-7
  16. Mao, L., Barnett, S., Begg, D., Schleyer, G., Wight, G. (2014) Numerical Simulation of Ultra High Performance Fibre Reinforced Concrete Panel Subjected to Blast Loading, Int. J. Impact Eng., 64, pp.91~100. https://doi.org/10.1016/j.ijimpeng.2013.10.003
  17. Ou, Y.C., Tsai, M.S., Liu, K.Y., Chang, K.C. (2012) Compressive Behavior of Steel-Fiber-Reinforced Concrete with a High Reinforcing Index, J. Mater. Civ. Eng., 24, pp.207~215. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000372
  18. Park, J.K., Kim, S.W., Kim, D.J. (2017) Matrix-Strength-Dependent Strain-Rate Sensitivity of Strain-Hardening Fiber-Reinforced Cementitious Composites under Tensile Impact, Compos. Struct., 162, pp.313~324. https://doi.org/10.1016/j.compstruct.2016.12.022
  19. Perumal, R. (2015) Correlation of Compressive Strength and Other Engineering Properties of High-Performance Steel FiberReinforced Concrete, J. Mater. Civ. Eng., 27(1), pp.1~8. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001050
  20. Ren, G.M., Wu, H., Fang, Q., Liu, J.Z., Gong, Z.M. (2016) Triaxial Compressive behavior of UHPCC and Applications in the Projectile Impact Snalyses, Constr. & Build. Mater., 113, pp.1~14. https://doi.org/10.1016/j.conbuildmat.2016.02.227
  21. Teng, T.L., Chu, Y.A., Chang, F.A., Shen, B.C., Cheng, D.S. (2008) Development and Validation of Numerical Model of Steel Fiber Reinforced Concrete for High-Velocity Impact, Comput.l Mater. Sci., 42, pp.90~99. https://doi.org/10.1016/j.commatsci.2007.06.013
  22. Tu, Z., Lu, Y. (2009) Evaluation of Typical Concrete Material Models used in Hydrocodes for High Dynamic Response Simulations, Int. J. Impact Eng., 36, pp.132-146. https://doi.org/10.1016/j.ijimpeng.2007.12.010
  23. Wang, S., Le, H.T.N., Pho, L.H., Feng, H., Zhang, M.H. (2016) Resistance of High-Performance Fiber-Reinforced Cement Composites Against High-Velocity Projectile Impact, International Int. J. Impact Eng., 95, pp.89~104. https://doi.org/10.1016/j.ijimpeng.2016.04.013
  24. Wang, Z.L., Konietzky, H., Huang, R.Y. (2009) Elastic-PlasticHydrodynamic Analysis of Crater Blasting in Steel Fiber Reinforced Concrete, Theor. & Appl. Fract. Mech., 52, pp.111~116. https://doi.org/10.1016/j.tafmec.2009.08.005
  25. Wang, Z.L., Wu, J., Wang, J.G. (2010) Experimental and Numerical Analysis on Effect of Fibre Aspect Ratio on Mechanical Properties of SFRC, Constr. & Build. Mater., 24, pp.559~565. https://doi.org/10.1016/j.conbuildmat.2009.09.009
  26. Wang, S., Zhang, M.H., Quek, S.T. (2011) Effect of High Strain Rate Loading on Compressive Behaviour of Fibre-Reinforced High-Strength Concrete, Mag. Concr. Res., 63, pp.813~827. https://doi.org/10.1680/macr.2011.63.11.813
  27. Wu, H., Ren, G.M., Fang, Q., Liu, J.Z. (2019) Response of Ultra-High Performance Cementitious Composites Filled Steel Tube (UHPCC-FST) Subjected to Low-Velocity Impact, Thin-Walled Struct., 144, p.106341. https://doi.org/10.1016/j.tws.2019.106341
  28. Wu, Y., Crawford, J.E., Magallanes, J.M. (2012) Performance of LS-DYNA Concrete Constitutive Models, 12th International LS-DYNA User Conference, pp.1~14.
  29. Yang, L., Lin, X., Gravina, R.J. (2018) Evaluation of Dynamic Increase Factor Models for Steel Fibre Reinforced Concrete, Constr. and Build. Mater., 190, pp.632~644. https://doi.org/10.1016/j.conbuildmat.2018.09.085
  30. Yoo, D.Y., Yoon, Y.S., Banthia, N. (2015) Flexural Response of Steel-Fiber-Reinforced Concrete Beams: Effects of Strength, Fiber Content, and Strain-Rate, Cement & Concr. Compos., 64, pp.84~92. https://doi.org/10.1016/j.cemconcomp.2015.10.001