DOI QR코드

DOI QR Code

Buckling analysis of arbitrary two-directional functionally graded nano-plate based on nonlocal elasticity theory using generalized differential quadrature method

  • Emadi, Maryam (Department of Mechanical Engineering, Yasouj University) ;
  • Nejad, Mohammad Zamani (Department of Mechanical Engineering, Yasouj University) ;
  • Ziaee, Sima (Department of Mechanical Engineering, Yasouj University) ;
  • Hadi, Amin (Cellular and Molecular Research Center, Yasuj University of Medical Sciences)
  • 투고 : 2019.12.12
  • 심사 : 2020.11.02
  • 발행 : 2021.06.10

초록

In this paper the buckling analysis of the nanoplate made of arbitrary bi-directional functionally graded (BDFG) materials with small scale effects are investigated. To study the small-scale effects on buckling load, the Eringen's nonlocal theory is applied. Employing the principle of minimum potential energy, the governing equations are obtained. Generalize differential quadrature method (GDQM) is used to solve the governing equations for various boundary conditions to obtain the buckling load of BDFG nanoplates. These models can degenerate into the classical models if the material length scale parameter is taken to be zero. Comparison between the results of GDQ method and other papers for buckling analysis of a simply supported rectangular nano FGM plate reveals the accuracy of GDQ method. At the end some numerical results are presented to study the effects of material length scale parameter, plate thickness, aspect ratio, Poisson's ratio boundary condition and side to thickness ratio on size dependent Frequency.

키워드

참고문헌

  1. Adeli, M.M., Hadi, A., Hosseini, M. and Gorgani, H.H. (2017), "Torsional vibration of nano-cone based on nonlocal strain gradient elasticity theory", Eur. Phys. J. Plus, 132(9), 393. https://doi.org/10.1140/epjp/i2017-11688-0.
  2. Aminipour, H., Janghorban, M. and Li, L. (2020), "Wave dispersion in nonlocal anisotropic macro/nanoplates made of functionally graded materials", Waves in Random and Complex Media, 1-45. https://doi.org/10.1080/17455030.2020.1713422 .
  3. Arefi, M., Mohammad-Rezaei Bidgoli, E. and Civalek, O. (2020), "Bending response of FG composite doubly curved nanoshells with thickness stretching via higher-order sinusoidal shear theory", Mech. Based Des. Struct. Mach., 1-29. https://doi.org/10.1080/15397734.2020.1777157.
  4. Asemi, S.R., Farajpour, A., Borghei, M. and Hassani, A.H. (2014), "Thermal effects on the stability of circular graphene sheets via nonlocal continuum mechanics", Latin Am. J. Solid. Struct., 11(4), 704-724. https://doi.org/10.1590/S1679-78252014000400009.
  5. Barati, A., Adeli, M.M. and Hadi, A. (2020), "Static torsion of bidirectional functionally graded microtube based on the couple stress theory under magnetic field", Int. J. Appl. Mech., 12(2), 2050021. https://doi.org/10.1142/S1758825120500210.
  6. Barati, A. and Norouzi, S. (2020), "Nonlocal elasticity theory for static torsion of the bi-directional functionally graded microtube under magnetic field", J. Comput. Appl. Mech., 51(1), 30-36. https://doi.org/10.22059/JCAMECH.2019.294263.462.
  7. Barati, A., Nejad, M. Z., Hadi, A. and Noroozi, R. (2020), On vibration of bi-directional functionally graded nanobeams under magnetic field", Mech. Based Des. Struct. Mach., In press. https://doi.org/10.1080/15397734.2020.1719507.
  8. Dabbagh, A., Rastgoo, A. and Ebrahimi, F. (2020), "Thermal buckling analysis of agglomerated multiscale hybrid nanocomposites via a refined beam theory", Mech. Based Des. Struct. Mach., 1-27. https://doi.org/10.1080/15397734.2019.1692666.
  9. Daneshmehr, A. and Rajabpoor, A. (2014), "Stability of size dependent functionally graded nanoplate based on nonlocal elasticity and higher order plate theories and different boundary conditions", Int. J. Eng. Sci., 82, 84-100. https://doi.org/10.1016/j.ijengsci.2014.04.017.
  10. Daneshmehr, A., Rajabpoor, A. and Hadi, A. (2015), "Size dependent free vibration analysis of nanoplates made of functionally graded materials based on nonlocal elasticity theory with high order theories", Int. J. Eng. Sci., 95, 23-35. https://doi.org/10.1016/j.ijengsci.2015.05.011
  11. Dehshahri, K., Nejad, M.Z., Ziaee, S., Niknejad, A. and Hadi, A. (2020), "Free vibrations analysis of arbitrary three-dimensionally FGM nanoplates", Adv. Nano Res., 8(2), 115. https://doi.org/10.12989/anr.2020.8.2.115.
  12. Dindarloo, M.H., Li, L., Dimitri, R. and Tornabene, F. (2020), "Nonlocal Elasticity Response of Doubly-Curved Nanoshells", Symmetry, 12(3), 466. https://doi.org/10.3390/sym12030466.
  13. Ebrahimi, F. and Dabbagh, A. (2019), "Vibration analysis of multi-scale hybrid nanocomposite plates based on a Halpin-Tsai homogenization model", Compos. Part B: Eng., 173, 106955. https://doi.org/10.1016/j.compositesb.2019.106955.
  14. Ebrahimi, T., Nejad, M.Z., Jahankohan, H. and Hadi, A. (2021), "Thermoelastoplastic response of FGM linearly hardening rotating thick cylindrical pressure vessels", Steel Compos. Struct., 38(2), 189-211. https://doi.org/10.12989/scs.2021.38.2.189.
  15. Eringen, A.C. (1972a), "Nonlocal polar elastic continua", Int. J. Eng. Sci., 10(1), 1-16. https://doi.org/10.1016/0020-7225(72)90070-5.
  16. Eringen, A.C. (1972b), "Theory of micromorphic materials with memory", Int. J. Eng. Sci., 10(7), 623-641. https://doi.org/10.1016/0020-7225(72)90089-4.
  17. Eringen, A.C. (1983), "On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves", J. Appl. Phys., 54(9), 4703-4710. https://doi.org/10.1063/1.332803.
  18. Eringen, A.C. (2002), Nonlocal continuum field theories: Springer Science & Business Media.
  19. Fatehi, P. and Nejad, M.Z. (2014), "Effects of material gradients on onset of yield in fgm rotating thick cylindrical shells", Int. J. Appl. Mech., 6(4), Article Number: 1450038. https://doi.org/10.1142/S1758825114500380.
  20. Farajpour, M.R., Shahidi, A.R. and Farajpour, A. (2019), "Elastic waves in fluid-conveying carbon nanotubes under magnetohygro-mechanical loads via a two-phase local/nonlocal mixture model", Mater. Res. Express, 6(8), 0850a8. https://doi.org/10.1088/2053-1591/ab2396
  21. Farajpour, A., Howard, C.Q. and Robertson, W.S. (2020), "On size-dependent mechanics of nanoplates", Int. J. Eng. Sci., 156, 103368. https://doi.org/10.1016/j.ijengsci.2020.103368.
  22. Ghannad, M., Rahimi, G.H. and Nejad, M.Z. (2013), "Elastic analysis of pressurized thick cylindrical shells with variable thickness made of functionally graded materials", Compos. Part B-Eng., 45(1), 388-396. https://doi.org/10.1016/j.compositesb.2012.09.043
  23. Gharibi, M., Nejad, M.Z. and Hadi, A. (2017), "Elastic analysis of functionally graded rotating thick cylindrical pressure vessels with exponentially-varying properties using power series method of Frobenius", J. Comput. Appl. Mech., 48(1), 89-98.
  24. Ghayesh, M.H. and Farajpour, A. (2019), "A review on the mechanics of functionally graded nanoscale and microscale structures", Int. J. Eng. Sci., 137, 8-36. https://doi.org/10.1016/j.ijengsci.2018.12.001.
  25. Goodarzi, M., Mohammadi, M., Farajpour, A. and Khooran, M. (2014), "Investigation of the effect of pre-stressed on vibration frequency of rectangular nanoplate based on a visco-Pasternak foundation", J. Solid Mech., 6, 98-121.
  26. Hadi, A., Nejad, M.Z. and Hosseini, M. (2018), "Vibrations of three-dimensionally graded nanobeams", Int. J. Eng. Sci., 128, 12-23. https://doi.org/10.1016/j.ijengsci.2018.03.004.
  27. Hadi, A., Nejad, M.Z., Rastgoo, A. and Hosseini, M. (2018), "Buckling analysis of FGM Euler-Bernoulli nano-beams with 3D-varying properties based on consistent couple-stress theory", Steel Compos. Struct., 26(6), 663-672. https://doi.org/10.12989/scs.2018.26.6.663.
  28. Hadi, A., Rastgoo, A., Bolhassani, A. and Haghighipour, N. (2019), "Effects of stretching on molecular transfer from cell membrane by forming pores", Soft Mater., 17(4), 391-399. https://doi.org/10.1080/1539445X.2019.1610974.
  29. Hadi, A., Rastgoo, A., Haghighipour, N. and Bolhassani, A. (2018), "Numerical modelling of a spheroid living cell membrane under hydrostatic pressure", J. Stat. Mech.: Theory Exp., 2018(8), 083501. https://doi.org/10.1088/1742-5468/aad369.
  30. Hosseini, M., Gorgani, H.H., Shishesaz, M. and Hadi, A. (2017), "Size-dependent stress analysis of single-wall carbon nanotube based on strain gradient theory", Int. J. Appl. Mech., 9(6), 1750087. https://doi.org/10.1142/S1758825117500879.
  31. Hosseini, M., Hadi, A., Malekshahi, A. and Shishesaz, M. (2018), "A review of size-dependent elasticity for nanostructures", J. Comput. Appl. Mech., 49(1), 197-211. https://doi.org/10.22059/JCAMECH.2018.259334.289.
  32. Hui, Y. and Rinaldi, M. (2013), "Fast and high resolution thermal detector based on an aluminum nitride piezoelectric microelectromechanical resonator with an integrated suspended heat absorbing element", Appl. Phys. Lett., 102(9), 093501. https://doi.org/10.1063/1.4794074.
  33. Jabbari, M., Nejad, M.Z. and Ghannad, M. (2015), "Thermo-elastic analysis of axially functionally graded rotating thick cylindrical pressure vessels with variable thickness under mechanical loading", Int. J. Eng. Sci., 96, 1-18. https://doi.org/10.1016/j.ijengsci.2015.07.005
  34. Javvaji, B., Budarapu, P.R., Sutrakar, V.K., Mahapatra, D.R., Paggi, M., Zi, G. and Rabczuk, T. (2016), "Mechanical properties of Graphene: Molecular dynamics simulations correlated to continuum based scaling laws", Comput. Mater. Sci., 125, 319-327. https://doi.org/10.1016/j.commatsci.2016.08.016.
  35. Jeong, H.H., Mark, A.G., Alarcon-Correa, M., Kim, I., Oswald, P., Lee, T.C. and Fischer, P. (2016), "Dispersion and shape engineered plasmonic nanosensors", Nature Commun., 7(1), 1-7. https://doi.org/10.1038/ncomms11331.
  36. Kahrobaiyan, M., Asghari, M., Rahaeifard, M. and Ahmadian, M. (2010), "Investigation of the size-dependent dynamic characteristics of atomic force microscope microcantilevers based on the modified couple stress theory", Int. J. Eng. Sci., 48(12), 1985-1994. https://doi.org/10.1016/j.ijengsci.2010.06.003.
  37. Karamanli, A. and Aydogdu, M. (2020), "Structural dynamics and stability analysis of 2D-FG microbeams with two-directional porosity distribution and variable material length scale parameter", Mech. Based Des. Struct. Mach., 48(2), 164-191. https://doi.org/10.1080/15397734.2019.1627219.
  38. Karami, B., Shahsavari, D., Janghorban, M. and Li, L. (2019), "On the resonance of functionally graded nanoplates using bi-Helmholtz nonlocal strain gradient theory", Int. J. Eng. Sci., 144, 103143. https://doi.org/10.1016/j.ijengsci.2019.103143.
  39. Karami, B., Shahsavari, D., Janghorban, M. and Li, L. (2020), "Free vibration analysis of FG nanoplate with poriferous imperfection in hygrothermal environment", Struct. Eng. Mech., 73(2), 191. https://doi.org/10.12989/sem.2020.73.2.191.
  40. Kashkoli, M.D., Tahan, K.N. and Nejad, M.Z. (2018), "Thermomechanical creep analysis of FGM thick cylindrical pressure vessels with variable thickness", Int. J. Appl. Mech., 10(01), Article Number: 1850008. https://doi.org/10.1142/S1758825118500084
  41. Ke, Y., Meyer, T., Shih, W.M. and Bellot, G. (2016), "Regulation at a distance of biomolecular interactions using a DNA origami nanoactuator", Nature Commun., 7, 10935. https://doi.org/10.1038/ncomms10935
  42. Khorshidi, K. and Fallah, A. (2016), "Buckling analysis of functionally graded rectangular nano-plate based on nonlocal exponential shear deformation theory", Int. J. Mech. Sci., 113, 94-104. https://doi.org/10.1016/j.ijmecsci.2016.04.014.
  43. Kumar Kalkal, K., Gunghas, A. and Deswal, S. (2020), "Two-dimensional magneto-thermoelastic interactions in a micropolar functionally graded solid", Mech. Based Des. Struct. Mach., 48(3), 348-369. https://doi.org/10.1080/15397734.2019.1652100.
  44. Li, L. and Hu, Y. (2017), "Orsional vibration of bi-directional functionally graded nanotubes based on nonlocal elasticity theory", Compos. Struct., 172, 242-250. https://doi.org/10.1016/j.compstruct.2017.03.097
  45. Li, L., Lin, R. and Ng, T.Y. (2020), "Contribution of nonlocality to surface elasticity", Int. J. Eng. Sci., 152, 103311. https://doi.org/10.1016/j.ijengsci.2020.103311
  46. Lu, C., Lim, C.W. and Chen, W. (2009a), "Semi-analytical analysis for multi-directional functionally graded plates: 3-D elasticity solutions", Int. J. Numer. Method. Eng., 79(1), 25-44. https://doi.org/10.1002/nme.2555.
  47. Lu, C., Lim, C.W. and Chen, W. (2009b), "Size-dependent elastic behavior of FGM ultra-thin films based on generalized refined theory", Int. J. Solid. Struct., 46(5), 1176-1185. https://doi.org/10.1016/j.ijsolstr.2008.10.012.
  48. Mazarei, Z., Nejad, M.Z. and Hadi, A. (2016), "Thermo-elasto-plastic analysis of thick-walled spherical pressure vessels made of functionally graded materials", Int. J. Appl. Mech., 8(4), 1650054. https://doi.org/10.1142/S175882511650054X
  49. Mohammadi, M., Farajpour, A., Goodarzi, M. and Dinari, F. (2014), "Thermo-mechanical vibration analysis of annular and circular graphene sheet embedded in an elastic medium", Latin Am. J. Solid. Struct., 11(4), 659-682. https://doi.org/10.1590/S1679-78252014000400007
  50. Najafzadeh, M., Adeli, M.M., Zarezadeh, E. and Hadi, A. (2020), "Torsional vibration of the porous nanotube with an arbitrary cross-section based on couple stress theory under magnetic field", Mech. Based Des. Struct. Mach., 1-15. https://doi.org/10.1080/15397734.2020.1733602.
  51. Natarajan, S., Chakraborty, S., Thangavel, M., Bordas, S. and Rabczuk, T. (2012), "Size-dependent free flexural vibration behavior of functionally graded nanoplates", Comput. Mater. Sci., 65, 74-80. https://doi.org/10.1016/j.commatsci.2012.06.031.
  52. Nejad, M.Z., Alamzadeh, N. and Hadi, A. (2018), "Thermoelastoplastic analysis of FGM rotating thick cylindrical pressure vessels in linear elastic-fully plastic condition", Compos. Part B: Eng., 154, 410-422. https://doi.org/10.1016/j.compositesb.2018.09.022.
  53. Nejad, M.Z., Jabbari, M. and Hadi, A. (2017), "A review of functionally graded thick cylindrical and conical shells", J. Comput. Appl. Mech., 48(2), 357-370. https://doi.org/10.22059/JCAMECH.2017.247963.220.
  54. Nejad, M.Z. and Fatehi, P. (2015), "Exact elasto-plastic analysis of rotating thick-walled cylindrical pressure vessels made of functionally graded materials", Int. J. Eng. Sci., 86, 26-43. https://doi.org/10.1016/j.ijengsci.2014.10.002.
  55. Nejad, M.Z., Rastgoo, A. and Hadi, A. (2014). Effect of exponentially-varying properties on displacements and stresses in pressurized functionally graded thick spherical shells with using iterative technique", J. Solid Mech., 6(4), 366-377.
  56. Nejad, M.Z. and Hadi, A. (2016a), "Eringen's non-local elasticity theory for bending analysis of bi-directional functionally graded Euler-Bernoulli nano-beams", Int. J. Eng. Sci., 106, 1-9. https://doi.org/10.1016/j.ijengsci.2016.05.005.
  57. Nejad, M.Z. and Hadi, A. (2016b), "Non-local analysis of free vibration of bi-directional functionally graded Euler-Bernoulli nano-beams", Int. J. Eng. Sci., 105, 1-11. http://dx.doi.org/10.1016/j.ijengsci.2016.04.011.
  58. Nejad, M.Z., Hadi, A. and Farajpour, A. (2017), "Consistent couple-stress theory for free vibration analysis of Euler-Bernoulli nano-beams made of arbitrary bi-directional functionally graded materials", Struct. Eng. Mech., 63(2), 161-169. https://doi.org/10.12989/sem.2017.63.2.161.
  59. Nejad, M.Z., Hadi, A., Omidvari, A. and Rastgoo, A. (2018), "Bending analysis of bi-directional functionally graded Euler-Bernoulli nano-beams using integral form of Eringen's non-local elasticity theory", Struct. Eng. Mech., 67(4), 417-425. https://doi.org/10.12989/sem.2018.67.4.417.
  60. Nejad, M.Z., Hadi, A. and Rastgoo, A. (2016), "Buckling analysis of arbitrary two-directional functionally graded Euler-Bernoulli nano-beams based on nonlocal elasticity theory", Int. J. Eng. Sci., 103, 1-10. https://doi.org/10.1016/j.ijengsci.2016.03.001.
  61. Nejad, M.Z., Rastgoo, A. and Hadi, A. (2014), "Exact elasto-plastic analysis of rotating disks made of functionally graded materials", Int. J. Eng. Sci., 85, 47-57. https://doi.org/10.1016/j.ijengsci.2014.07.009.
  62. Nejad, M.Z., Rahimi, G.H. and M. (2009), "Set of field equations for thick shell of revolution made of functionally graded materials in curvilinear coordinate system", Mechanics, 77(3), 18-26s.
  63. Nie, G. and Zhong, Z. (2010), "Dynamic analysis of multidirectional functionally graded annular plates", Appl. Math. Model., 34(3), 608-616. https://doi.org/10.1016/j.apm.2009.06.009.
  64. Noroozi, R., Barati, A., Kazemi, A., Norouzi, S. and Hadi, A. (2020), "Torsional vibration analysis of bi-directional FG nano-cone with arbitrary cross-section based on nonlocal strain gradient elasticity", Adv. Nano Res., 8(1), 13-24. https://doi.org/10.12989/anr.2020.8.1.013
  65. Rahmani, O., Norouzi, S., Golmohammadi, H. and Hosseini, S. (2017), "Dynamic response of a double, single-walled carbon nanotube under a moving nanoparticle based on modified nonlocal elasticity theory considering surface effects", Mech. Adv. Mater. Struct., 24(15), 1274-1291. https://doi.org/10.1080/15376494.2016.1227504. .
  66. She, G.L., Jiang, X. and Karami, B. (2019), "On thermal snap-buckling of FG curved nanobeams", Mater. Res. Express, 6(11), 115008. https://doi.org/10.1088/2053-1591/ab44f1.
  67. She, G.L., Yan, K.M., Zhang, Y.L., Liu, H.B. and Ren, Y.R. (2018), "Wave propagation of functionally graded porous nanobeams based on non-local strain gradient theory", Eur. Phys. J. Plus, 133(9), 368. https://doi.org/10.1140/epjp/i2018-12196-5.
  68. She, G.L., Yuan, F.G., Karami, B., Ren, Y.R. and Xiao, W.S. (2019). On nonlinear bending behavior of FG porous curved nanotubes", Int. J. Eng. Sci., 135, 58-74. https://doi.org/10.1016/j.ijengsci.2018.11.005.
  69. She, G.L., Liu, H.B. and Karami, B. (2020), "On resonance behavior of porous FG curved nanobeams", Steel Compos. Struct., 36(2), 179-186. https://doi.org/10.12989/scs.2020.36.2.179.
  70. Shishesaz, M., Hosseini, M., Tahan, K.N. and Hadi, A. (2017), "Analysis of functionally graded nanodisks under thermoelastic loading based on the strain gradient theory", Acta Mech., 228(12), 4141-4168. https://doi.org/10.1007/s00707-017-1939-8
  71. Soleimani, A., Dastani, K., Hadi, A. and Naei, M.H. (2019), "Effect of out-of-plane defects on the postbuckling behavior of graphene sheets based on nonlocal elasticity theory", Steel Compos. Struct., 30(6), 517-534. https://doi.org/10.12989/scs.2019.30.6.517.
  72. Steinberg, M.A. (1986). Materials for aerospace. Scientific American, 255(4), 66-73. https://doi.org/10.1038/scientificamerican1086-66
  73. Torabi, J., Ansari, R., Zabihi, A. and Hosseini, K. (2020), "Dynamic and pull-in instability analyses of functionally graded nanoplates via nonlocal strain gradient theory", Mech. Based Des. Struct. Mach., 1-21. https://doi.org/10.1080/15397734.2020.1721298.
  74. Trinh, L.C., Vo, T.P., Thai, H.T. and Nguyen, T.K. (2018), "Size-dependent vibration of bi-directional functionally graded microbeams with arbitrary boundary conditions", Compos. Part B: Eng., 134, 225-245. https://doi.org/10.1016/j.compositesb.2017.09.054.
  75. Wang, Z.H., Wang, X.H., Xu, G.D., Cheng, S. and Zeng, T. (2016), "Free vibration of two-directional functionally graded beams", Compos. Struct., 135, 191-198. https://doi.org/10.1016/j.compstruct.2015.09.013.
  76. Yang, T., Tang, Y., Li, Q. and Yang, X.D. (2018), "Nonlinear bending, buckling and vibration of bi-directional functionally graded nanobeams", Compos. Struct., 204, 313-319. https://doi.org/10.1016/j.compstruct.2018.07.045.
  77. Zhang, J. and Fu, Y. (2012), "Pull-in analysis of electrically actuated viscoelastic microbeams based on a modified couple stress theory", Meccanica, 47(7), 1649-1658. https://doi.org/10.1007/s11012-012-9545-2