DOI QR코드

DOI QR Code

Stability/instability of the graphene reinforced nano-sized shell employing modified couple stress model

  • Yao, Zhigang (Department of Electronic and Optic Engineering, Army Engineering University) ;
  • Xie, Hui (Department of Electronic and Optic Engineering, Army Engineering University) ;
  • Wang, Yulei (Institute of Electronics and Information Engineering, Tongji University)
  • 투고 : 2020.07.20
  • 심사 : 2021.01.15
  • 발행 : 2021.01.25

초록

The current research deals with, stability/instability and cylindrical composite nano-scaled shell's resonance frequency filled by graphene nanoplatelets (GPLs) under various thermal conditions (linear and nonlinear thermal loadings). The piece-wise GPL-reinforced composites' material properties change through the orientation of cylindrical nano-sized shell's thickness as the temperature changes. Moreover, in order to model all layers' efficient material properties, nanomechanical model of Halpin-Tsai has been applied. A functionally modified couple stress model (FMCS) has been employed to simulate GPLRC nano-sized shell's size dependency. It is firstly investigated that reaching the relative frequency's percentage to 30% would lead to thermal buckling. The current study's originality is in considering the multifarious influences of GPLRC and thermal loading along with FMCS on GPLRC nano-scaled shell's resonance frequencies, relative frequency, dynamic deflection, and thermal buckling. Furthermore, Hamilton's principle is applied to achieve boundary conditions (BCs) and governing motion equations, while the mentioned equations are solved using an analytical approach. The outcomes reveal that a range of distributions in temperature and other mechanical and configurational characteristics have an essential contribution in GPLRC cylindrical nano-scaled shell's relative frequency change, resonance frequency, stability/instability, and dynamic deflection. The current study's outcomes are practical assumptions for materials science designing, nano-mechanical, and micromechanical systems such as micro-sized sensors and actuators.

키워드

과제정보

This work was supported by Foundation Enhancement Programme Fund (2019-JCJQ-JJ-012).

참고문헌

  1. Abualnour, M., Chikh, A., Hebali, H., Kaci, A., Tounsi, A., Bousahla, A.A. and Tounsi, A. (2019), "Thermomechanical analysis of antisymmetric laminated reinforced composite plates using a new four variable trigonometric refined plate theory", Comput. Concrete. 24(6), 489-498. https://doi.org/10.12989/cac.2019.24.6.489
  2. Ahmed, R.A., Fenjan, R.M. and Faleh, N.M. (2019), "Analyzing post-buckling behavior of continuously graded FG nanobeams with geometrical imperfections", Geomech. Eng., 17(2), 175-180. https://doi.org/10.12989/gae.2019.17.2.175.
  3. Al-Furjan, M., Alzahrani, B., Shan, L., Habibi, M. and Jung, D.W. (2020), "Nonlinear forced vibrations of nanocomposite-reinforced viscoelastic thick annular system under hygrothermal environment", Mech. Based Des. Struct. Machines. 1-27. https://doi.org/10.1080/15397734.2020.1824795.
  4. Al-Furjan, M., Bolandi, S.Y., Shan, L., Habibi, M. and Jung, D.W. (2020), "On the vibrations of a high-speed rotating multi-hybrid nanocomposite reinforced cantilevered microdisk", Mech. Based Des. Struct. Machines. 1-29. https://doi.org/10.1080/15397734.2020.1828098.
  5. Al-Furjan, M., Fereidouni, M., Habibi, M., Abd Ali, R., Ni, J. and Safarpour, M. (2020), "Influence of in-plane loading on the vibrations of the fully symmetric mechanical systems via dynamic simulation and generalized differential quadrature framework", Eng. Comput., 1-23. https://doi.org/10.1007/s00366-020-01177-7.
  6. Al-Furjan, M., Habibi, M. and Safarpour, H. (2020), "Vibration control of a smart shell reinforced by graphene nanoplatelets", Int. J. Appl. Mech., https://doi.org/10.1142/S1758825120500660.
  7. Al-Furjan, M., Habibi, M., Chen, G., Safarpour, H., Safarpour, M. and Tounsi, A. (2020), "Chaotic oscillation of a multi-scale hybrid nano-composites reinforced disk under harmonic excitation via GDQM", Compos. Struct., 112737. https://doi.org/10.1016/j.compstruct.2020.112737.
  8. Al-Furjan, M., Habibi, M., Chen, G., Safarpour, H., Safarpour, M. and Tounsi, A. (2020), "Chaotic oscillation of a multi-scale hybrid nano-composites reinforced disk under harmonic excitation via GDQM", Compos. Struct., 252 112737. https://doi.org/10.1016/j.compstruct.2020.112737.
  9. Al-Furjan, M., Habibi, M., Chen, G., Safarpour, H., Safarpour, M. and Tounsi, A. (2020), "Chaotic simulation of the multi-phase reinforced thermo-elastic disk using GDQM", Eng. Comput., 1-24. https://doi.org/10.1007/s00366-020-01144-2.
  10. Al-Furjan, M., Habibi, M., won Jung, D., Chen, G., Safarpour, M. and Safarpour, H. (2020), "Chaotic responses and nonlinear dynamics of the graphene nanoplatelets reinforced doublycurved panel", Europ. J. Mech.-A/Solids. 104091. https://doi.org/10.1016/j.euromechsol.2020.104091.
  11. Al-Furjan, M., Habibi, M., Won Jung, D., Sadeghi, S., Safarpour, H., Tounsi, A. and Chen, G. (2020), "A computational framework for propagated waves in a sandwich doubly curved nanocomposite panel", Eng. Comput., 1-18. https://doi.org/10.1007/s00366-020-01130-8.
  12. Al-Furjan, M., Mohammadgholiha, M., Alarifi, I.M., Habibi, M. and Safarpour, H. (2020), "On the phase velocity simulation of the multi curved viscoelastic system via an exact solution framework", Eng. Comput., 1-17. https://doi.org/10.1007/s00366-020-01152-2
  13. Al-Furjan, M., Oyarhossein, M.A., Habibi, M., Safarpour, H. and Jung, D.W. (2020), "Frequency and critical angular velocity characteristics of rotary laminated cantilever microdisk via twodimensional analysis", Thin-Walled Struct., 157, 107111. https://doi.org/10.1016/j.tws.2020.107111.
  14. Al-Furjan, M., Oyarhossein, M.A., Habibi, M., Safarpour, H. and Jung, D.W. (2020), "Wave propagation simulation in an electrically open shell reinforced with multi-phase nanocomposites", Eng. Comput., 1-17. https://doi.org/10.1007/s00366-020-01167-9.
  15. Al-Furjan, M., Oyarhossein, M.A., Habibi, M., Safarpour, H., Jung, D.W. and Tounsi, A. (2020), "On the wave propagation of the multi-scale hybrid nanocomposite doubly curved viscoelastic panel", Compos. Struct., 112947. https://doi.org/10.1016/j.compstruct.2020.112947.
  16. Al-Furjan, M., Safarpour, H., Habibi, M., Safarpour, M. and Tounsi, A. (2020), "A comprehensive computational approach for nonlinear thermal instability of the electrically FG-GPLRC disk based on GDQ method", Eng. Comput., 1-18. https://doi.org/10.1007/s00366-020-01088-7.
  17. Alimirzaei, S., Mohammadimehr, M. and Tounsi, A. (2019), "Nonlinear analysis of viscoelastic micro-composite beam with geometrical imperfection using FEM: MSGT electro-magnetoelastic bending, buckling and vibration solutions", Struct. Eng. Mech., 71(5), 485-502. https://doi.org/10.12989/sem.2019.71.5.485.
  18. Asghar, S., Naeem, M.N., Hussain, M., Taj, M. and Tounsi, A. (2020), "Prediction and assessment of nonlocal natural frequencies of DWCNTs: Vibration analysis", Comput. Concrete. 25(2), 133-144. https://doi.org/10.12989/cac.2020.25.2.133.
  19. Atanasov, M.S., Karlicic, D. and Kozic, P. (2017), "Forced transverse vibrations of an elastically connected nonlocal orthotropic double-nanoplate system subjected to an in-plane magnetic field", Acta Mechanica. 228(6), 2165-2185. https://doi.org/10.1007/s00707-017-1815-6.
  20. Balubaid, M., Tounsi, A., Dakhel, B. and Mahmoud, S. (2019), "Free vibration investigation of FG nanoscale plate using nonlocal two variables integral refined plate theory", Comput. Concrete. 24(6), 579-586. https://doi.org/10.12989/cac.2019.24.6.579
  21. Barati, M.R. (2018), "A general nonlocal stress-strain gradient theory for forced vibration analysis of heterogeneous porous nanoplates", Europ. J. Mech.-A/Solids. 67, 215-230. https://doi.org/10.1080/15376494.2018.1444235.
  22. Barooti, M.M., Safarpour, H. and Ghadiri, M. (2017), "Critical speed and free vibration analysis of spinning 3D single-walled carbon nanotubes resting on elastic foundations", Europ. Phys. J. Plus. 132(1), https://doi.org/10.1140/epjp/i2017-11275-5.
  23. Barretta, R., Canadija, M., Luciano, R. and de Sciarra, F.M. (2018), "Stress-driven modeling of nonlocal thermoelastic behavior of nanobeams", Int. J. Eng. Sci., 126, 53-67. https://doi.org/10.1016/j.ijengsci.2018.02.012.
  24. Barretta, R., Luciano, R. and Marotti de Sciarra, F. (2015), "A fully gradient model for Euler-Bernoulli nanobeams", Mathem. Prob. Eng., 2015, https://doi.org/10.1155/2015/495095.
  25. Bedia, W.A., Houari, M.S.A., Bessaim, A., Bousahla, A.A., Tounsi, A., Saeed, T. and Alhodaly, M.S. (2019). "A new hyperbolic two-unknown beam model for bending and buckling analysis of a nonlocal strain gradient nanobeams", J. Nano Res., https://doi.org/10.4028/www.scientific.net/JNanoR.57.175.
  26. Belbachir, N., Draich, K., Bousahla, A.A., Bourada, M., Tounsi, A. and Mohammadimehr, M. (2019), "Bending analysis of antisymmetric cross-ply laminated plates under nonlinear thermal and mechanical loadings", Steel Compos. Struct., 33(1), 81-92. https://doi.org/10.12989/scs.2019.33.1.081.
  27. Bellal, M., Hebali, H., Heireche, H., Bousahla, A.A., Tounsi, A., Bourada, F., Mahmoud, S., Bedia, E. and Tounsi, A. (2020), "Buckling behavior of a single-layered graphene sheet resting on viscoelastic medium via nonlocal four-unknown integral model", Steel Compos. Struct., 34(5), 643-655. https://doi.org/10.12989/scs.2020.34.5.643.
  28. Berghouti, H., Adda Bedia, E., Benkhedda, A. and Tounsi, A. (2019), "Vibration analysis of nonlocal porous nanobeams made of functionally graded material", Advan. Nano Res., 7(5), 351-364. https://doi.org/10.12989/anr.2019.7.5.351.
  29. Boulefrakh, L., Hebali, H., Chikh, A., Bousahla, A.A., Tounsi, A. and Mahmoud, S. (2019), "The effect of parameters of visco-Pasternak foundation on the bending and vibration properties of a thick FG plate", Geomech. Eng., 18(2), 161-178. https://doi.org/10.12989/gae.2019.18.2.161.
  30. Bourada, F., Bousahla, A.A., Tounsi, A., Bedia, E., Mahmoud, S., Benrahou, K.H. and Tounsi, A. (2020), "Stability and dynamic analyses of SW-CNT reinforced concrete beam resting on elastic-foundation", Comput. Concrete. 25(6), 485-495. https://doi.org/10.12989/cac.2020.25.6.485.
  31. Bousahla, A.A., Bourada, F., Mahmoud, S., Tounsi, A., Algarni, A., Bedia, E. and Tounsi, A. (2020), "Buckling and dynamic behavior of the simply supported CNT-RC beams using an integral-first shear deformation theory", Comput. Concrete. 25(2), 155-166. https://doi.org/10.12989/cac.2020.25.2.155.
  32. Boussoula, A., Boucham, B., Bourada, M., Bourada, F., Tounsi, A., Bousahla, A.A. and Tounsi, A. (2020), "A simple nth-order shear deformation theory for thermomechanical bending analysis of different configurations of FG sandwich plates", Smart Struct. Syst., 25(2), 197-218. https://doi.org/10.12989/sss.2020.25.2.197.
  33. Boutaleb, S., Benrahou, K.H., Bakora, A., Algarni, A., Bousahla, A.A., Tounsi, A., Tounsi, A. and Mahmoud, S. (2019), "Dynamic analysis of nanosize FG rectangular plates based on simple nonlocal quasi 3D HSDT", Advan. Nano Res., 7(3), 191. https://doi.org/10.12989/anr.2019.7.3.191.
  34. Canadija, M., Barretta, R. and De Sciarra, F.M. (2016), "A gradient elasticity model of Bernoulli-Euler nanobeams in nonisothermal environments", Europ. J. Mecha.-A/Solids. 55, 243-255. https://doi.org/10.1016/j.euromechsol.2015.09.008.
  35. Chen, D., Kitipornchai, S. and Yang, J. (2016), "Nonlinear free vibration of shear deformable sandwich beam with a functionally graded porous core", Thin-Walled Struct., 107, 39-48. https://doi.org/10.1016/j.tws.2016.05.025.
  36. Chen, S., Hassanzadeh-Aghdam, M. and Ansari, R. (2018), "An analytical model for elastic modulus calculation of SiC whiskerreinforced hybrid metal matrix nanocomposite containing SiC nanoparticles", J. Alloys Compounds. 767, 632-641. https://doi.org/10.1016/j.jallcom.2018.07.102.
  37. Chen, Y., He, L., Guan, Y., Lu, H. and Li, J. (2017), "Life cycle assessment of greenhouse gas emissions and water-energy optimization for shale gas supply chain planning based on multi-level approach: Case study in Barnett, Marcellus, Fayetteville, and Haynesville shales", Energy Convers. Managem., 134, 382-398. https://doi.org/10.1016/j.enconman.2016.12.019.
  38. Chikr, S.C., Kaci, A., Bousahla, A.A., Bourada, F., Tounsi, A., Bedia, E., Mahmoud, S., Benrahou, K.H. and Tounsi, A. (2020), "A novel four-unknown integral model for buckling response of FG sandwich plates resting on elastic foundations under various boundary conditions using Galerkin's approach", Geomech. Eng., 21(5), 471-487. https://doi.org/10.12989/gae.2020.21.5.471.
  39. Dong, Y., He, L., Wang, L., Li, Y. and Yang, J. (2018), "Buckling of spinning functionally graded graphene reinforced porous nanocomposite cylindrical shells: an analytical study", Aerosp. Sci. Technol., 82, 466-478. https://doi.org/10.1016/j.ast.2018.09.037.
  40. Dong, Y., Li, X., Gao, K., Li, Y. and Yang, J. (2020), "Harmonic resonances of graphene-reinforced nonlinear cylindrical shells: effects of spinning motion and thermal environment", Nonlinear. Dyn.. 99(2), 981-1000. https://doi.org/10.1007/s11071-019-05297-8.
  41. Dong, Y., Zhu, B., Wang, Y., He, L., Li, Y. and Yang, J. (2019), "Analytical prediction of the impact response of graphene reinforced spinning cylindrical shells under axial and thermal loads", Appl. Mathem. Modelling. 71, 331-348. https://doi.org/10.1016/j.apm.2019.02.024.
  42. Dong, Y., Zhu, B., Wang, Y., Li, Y. and Yang, J. (2018), "Nonlinear free vibration of graded graphene reinforced cylindrical shells: Effects of spinning motion and axial load", J. Sound Vib., 437, 79-96. https://doi.org/10.1016/j.jsv.2018.08.036.
  43. Draoui, A., Zidour, M., Tounsi, A. and Adim, B. (2019), "Static and dynamic behavior of nanotubes-reinforced sandwich plates using (FSDT)", J. Nano Res., https://doi.org/10.4028/www.scientific.net/JNanoR.57.117.
  44. Du, C., Li, Y. and Jin, X. (2014), "Nonlinear forced vibration of functionally graded cylindrical thin shells", Thin-Walled Struct., 78, 26-36. https://doi.org/10.1016/j.tws.2013.12.010.
  45. Ebrahimi, F., Supeni, E.E.B., Habibi, M. and Safarpour, H. (2020), "Frequency characteristics of a GPL-reinforced composite microdisk coupled with a piezoelectric layer", Europ. Phys. J. Plus. 135(2), 144. https://doi.org/10.1140/epjp/s13360-020-00217-x.
  46. El-Hassar, S.M., Benyoucef, S., Heireche, H. and Tounsi, A. (2016), "Thermal stability analysis of solar functionally graded plates on elastic foundation using an efficient hyperbolic shear deformation theory", Geomech. Eng., 10(3), 357-386. https://doi.org/10.12989/gae.2016.10.3.357.
  47. Fahsi, A., Tounsi, A., Hebali, H., Chikh, A., Adda Bedia, E. and Mahmoud, S. (2017), "A four variable refined nth-order shear deformation theory for mechanical and thermal buckling analysis of functionally graded plates", Geomech. Eng., 13(3), 385-410. https://doi.org/10.12989/gae.2017.13.3.385.
  48. Feng, C., Kitipornchai, S. and Yang, J. (2017), "Nonlinear bending of polymer nanocomposite beams reinforced with nonuniformly distributed graphene platelets (GPLs)", Compos. Part B: Eng., 110, 132-140. https://doi.org/10.1016/j.compositesb.2016.11.024.
  49. Gao, N., Hou, H. and Wu, J.H. (2018), "A composite and deformable honeycomb acoustic metamaterial", Int. J. Modern Phys. B. 32(20), 1850204. https://doi.org/10.1142/S0217979218502041.
  50. Gao, N., Luo, D., Cheng, B. and Hou, H. (2020), "Teaching-learning-based optimization of a composite metastructure in the 0-10 kHz broadband sound absorption range", J. Acoustic. Soc. Amer., 148(2), EL125-EL129. https://doi.org/10.1121/10.0001678.
  51. Gao, N., Tang, L., Deng, J., Lu, K., Hou, H. and Chen, K. "Design, fabrication and sound absorption test of composite porous metamaterial with embedding I-plates into porous polyurethane sponge", Appl. Acoustic., 175, 107845. https://doi.org/10.1016/j.apacoust.2020.107845.
  52. Gao, N., Wei, Z., Zhang, R. and Hou, H. (2019), "Low-frequency elastic wave attenuation in a composite acoustic black hole beam", Appl. Acoustics. 154, 68-76. https://doi.org/10.1016/j.apacoust.2019.04.029
  53. Gao, N., Wu, J., Lu, K. and Zhong, H. "Hybrid composite metaporous structure for improving and broadening sound absorption", Mech. Syst. Signal Processing. 154, 107504. https://doi.org/10.1016/j.ymssp.2020.107504.
  54. Gao, N., Wu, J.H., Yu, L. and Hou, H. (2016), "Ultralow frequency acoustic bandgap and vibration energy recovery in tetragonal folding beam phononic crystal", Int. J. Modern Phys. B. 30(18), 1650111. https://doi.org/10.1142/S0217979216501113.
  55. Ghabussi, A., Ashrafi, N., Shavalipour, A., Hosseinpour, A., Habibi, M., Moayedi, H., Babaei, B. and Safarpour, H. (2019), "Free vibration analysis of an electro-elastic GPLRC cylindrical shell surrounded by viscoelastic foundation using modified length-couple stress parameter", Mech. Based Des. Struct. Mach., 1-25. https://doi.org/10.1080/15397734.2019.1705166.
  56. Habibi, M., Mohammadi, A., Safarpour, H., Shavalipour, A. and Ghadiri, M. (2019), "Wave propagation analysis of the laminated cylindrical nanoshell coupled with a piezoelectric actuator", Mechanics Based Design of Structures and Machines. 1-19. https://doi.org/10.1080/15397734.2019.1697932
  57. Habibi, M., Safarpour, M. and Safarpour, H. (2020), "Vibrational characteristics of a FG-GPLRC viscoelastic thick annular plate using fourth-order Runge-Kutta and GDQ methods", Mech. Based Des. Struct. Mach., 1-22. https://doi.org/10.1080/15397734.2020.1779086.
  58. He, L., Chen, Y. and Li, J. (2018), "A three-level framework for balancing the tradeoffs among the energy, water, and airemission implications within the life-cycle shale gas supply chains", Resour., Conserv. Recy., 133, 206-228. https://doi.org/10.1016/j.resconrec.2018.02.015.
  59. He, L., Chen, Y., Zhao, H., Tian, P., Xue, Y. and Chen, L. (2018), "Game-based analysis of energy-water nexus for identifying environmental impacts during Shale gas operations under stochastic input", Sci. Total Environ., 627, 1585-1601. https://doi.org/10.1016/j.scitotenv.2018.02.004.
  60. He, L., Liu, J., Liu, Y., Cui, B., Hu, B., Wang, M., Tian, K., Song, Y., Wu, S. and Zhang, Z. (2019), "Titanium dioxide encapsulated carbon-nitride nanosheets derived from MXene and melamine-cyanuric acid composite as a multifunctional electrocatalyst for hydrogen and oxygen evolution reaction and oxygen reduction reaction", Appl. Catalysis B: Environment., 248, 366-379. https://doi.org/10.1016/j.apcatb.2019.02.033.
  61. Hellal, H., Bourada, M., Hebali, H., Bourada, F., Tounsi, A., Bousahla, A.A. and Mahmoud, S. (2019), "Dynamic and stability analysis of functionally graded material sandwich plates in hygro-thermal environment using a simple higher shear deformation theory", J. Sandwich Struct. Mater., 1099636219845841. https://doi.org/10.1177/1099636219845841.
  62. Hussain, M., Naeem, M.N., Taj, M. and Tounsi, A. (2020), "Simulating vibration of single-walled carbon nanotube using Rayleigh-Ritz's method", Advan. Nano Res., 8(3), 215-228. https://doi.org/10.12989/anr.2020.8.3.215.
  63. Hussain, M., Naeem, M.N., Tounsi, A. and Taj, M. (2019), "Nonlocal effect on the vibration of armchair and zigzag SWCNTs with bending rigidity", Advan. Nano Res., 7(6), 431-442. https://doi.org/10.12989/anr.2019.7.6.431.
  64. Issad, M.N., Fekrar, A., Bakora, A., Bessaim, A. and Tounsi, A. (2018), "Free vibration and buckling analysis of orthotropic plates using a new two variable refined plate theory", Geomech. Eng., 15(1), 711-719. https://doi.org/10.12989/gae.2018.15.1.711.
  65. Karami, B., Janghorban, M. and Tounsi, A. (2019), "Galerkin's approach for buckling analysis of functionally graded anisotropic nanoplates/different boundary conditions", Eng. Comput., 35(4), 1297-1316. https://doi.org/10.1007/s00366-018-0664-9.
  66. Li, X., Qin, Y., Li, Y. and Zhao, X. (2018), "The coupled vibration characteristics of a spinning and axially moving composite thin-walled beam", Mech. Advan. Mater. Struct., 25(9), 722-731. https://doi.org/10.1080/15376494.2017.1308598.
  67. Li, Z., Zhou, H., Hu, D. and Zhang, C. (2020), "Yield criterion for rocklike geomaterials based on strain energy and CMP model", Int. J. Geomech., 20(3), 04020013. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001593.
  68. Lin, J., Hu, J., Wang, W., Liu, K., Zhou, C., Liu, Z., Kong, S., Lin, S., Deng, Y. and Guo, Z. (2020), "Thermo and light-responsive strategies of smart titanium-containing composite material surface for enhancing bacterially anti-adhesive property", Chem. Eng. J., 125783. https://doi.org/10.1016/j.cej.2020.125783.
  69. Liu, J., Liu, Y. and Wang, X. (2020), "An environmental assessment model of construction and demolition waste based on system dynamics: a case study in Guangzhou", Environm. Sci. Pollut. Res., 27(30), 37237-37259. https://doi.org/10.1007/s11356-019-07107-5.
  70. Liu, Y., Hu, B., Wu, S., Wang, M., Zhang, Z., Cui, B., He, L. and Du, M. (2019), "Hierarchical nanocomposite electrocatalyst of bimetallic zeolitic imidazolate framework and MoS2 sheets for non-Pt methanol oxidation and water splitting", Appl. Catalysis B: Environ., 258, 117970. https://doi.org/10.1016/j.apcatb.2019.117970.
  71. Lu, H., Tian, P. and He, L. (2019), "Evaluating the global potential of aquifer thermal energy storage and determining the potential worldwide hotspots driven by socio-economic, geohydrologic and climatic conditions", Renew. Sustain. Energy Rev., 112, 788-796. https://doi.org/10.1016/j.rser.2019.06.013.
  72. Luo, X., Guo, J., Chang, P., Qian, H., Pei, F., Wang, W., Miao, K., Guo, S. and Feng, G. (2020), "ZSM-5@ MCM-41 composite porous materials with a core-shell structure: Adjustment of mesoporous orientation basing on interfacial electrostatic interactions and their application in selective aromatics transport", Separation Purification Technol., 239, 116516. https://doi.org/10.1016/j.seppur.2020.116516.
  73. Lv, Q., Liu, H., Wang, J., Liu, H. and Shang, Y. (2020), "Multiscale analysis on spatiotemporal dynamics of energy consumption CO2 emissions in China: Utilizing the integrated of DMSP-OLS and NPP-VIIRS nighttime light datasets", Sci. Total Environ., 703, 134394. https://doi.org/10.1016/j.scitotenv.2019.134394.
  74. Mahmoudi, A., Benyoucef, S., Tounsi, A., Benachour, A., Adda Bedia, E.A. and Mahmoud, S. (2019), "A refined quasi-3D shear deformation theory for thermo-mechanical behavior of functionally graded sandwich plates on elastic foundations", J. Sandwich Struct. Mater., 21(6), 1906-1929. https://doi.org/10.1177/1099636217727577.
  75. Matouk, H., Bousahla, A.A., Heireche, H., Bourada, F., Bedia, E., Tounsi, A., Mahmoud, S., Tounsi, A. and Benrahou, K. (2020), "Investigation on hygro-thermal vibration of P-FG and symmetric S-FG nanobeam using integral Timoshenko beam theory", Advan. Nano Res., 8(4), 293-305. https://doi.org/10.12989/anr.2020.8.4.293.
  76. Medani, M., Benahmed, A., Zidour, M., Heireche, H., Tounsi, A., Bousahla, A.A., Tounsi, A. and Mahmoud, S. (2019), "Static and dynamic behavior of (FG-CNT) reinforced porous sandwich plate using energy principle", Steel Compos. Struct., 32(5), 595-610. https://doi.org/10.12989/scs.2019.32.5.595.
  77. Mirsalehi, M., Azhari, M. and Amoushahi, H. (2017), "Buckling and free vibration of the FGM thin micro-plate based on the modified strain gradient theory and the spline finite strip method", Europ. J. Mech.-A/Solids. 61, 1-13. https://doi.org/10.1016/j.euromechsol.2016.08.008.
  78. Moayedi, H., Aliakbarlou, H., Jebeli, M., Noormohammadiarani, O., Habibi, M., Safarpour, H. and Foong, L. (2020), "Thermal buckling responses of a graphene reinforced composite micropanel structure", Int. J. Appl. Mech., 12(01), 2050010. https://doi.org/10.1142/S1758825120500106.
  79. Moayedi, H., Darabi, R., Ghabussi, A., Habibi, M. and Foong, L.K. (2020), "Weld orientation effects on the formability of tailor welded thin steel sheets", Thin-Wall. Struct., 149, 106669. https://doi.org/10.1016/j.tws.2020.106669.
  80. Oyarhossein, M.A., Alizadeh, A.A., Habibi, M., Makkiabadi, M., Daman, M., Safarpour, H. and Jung, D.W. (2020), "Dynamic response of the nonlocal strain-stress gradient in laminated polymer composites microtubes", Sci. Reports. 10(1), 1-19. https://doi.org/10.1038/s41598-020-61855-w.
  81. Pellicano, F. (2007), "Vibrations of circular cylindrical shells: theory and experiments", J. Sound Vib., 303(1-2), 154-170. https://doi.org/10.1016/j.jsv.2007.01.022.
  82. Rabhi, M., Benrahou, K.H., Kaci, A., Houari, M.S.A., Bourada, F., Bousahla, A.A., Tounsi, A., Bedia, E.A., Mahmoud, S. and Tounsi, A. (2020), "A new innovative 3-unknowns HSDT for buckling and free vibration of exponentially graded sandwich plates resting on elastic foundations under various boundary conditions", Geomech. Eng., 22(2), 119. https://doi.org/10.12989/gae.2020.22.2.119.
  83. Rafiee, M.A., Rafiee, J., Wang, Z., Song, H., Yu, Z.Z. and Koratkar, N. (2009), "Enhanced mechanical properties of nanocomposites at low graphene content", ACS Nano, 3(12), 3884-3890. https://doi.org/10.1021/nn9010472.
  84. Refrafi, S., Bousahla, A.A., Bouhadra, A., Menasria, A., Bourada, F., Tounsi, A., Bedia, E., Mahmoud, S., Benrahou, K.H. and Tounsi, A. (2020), "Effects of hygro-thermo-mechanical conditions on the buckling of FG sandwich plates resting on elastic foundations", Comput. Concrete. 25(4), 311-325. https://doi.org/10.12989/cac.2020.25.4.311.
  85. Sadoun, M., Houari, M.S.A., Bakora, A., Tounsi, A., Mahmoud, S. and Alwabli, A.S. (2018), "Vibration analysis of thick orthotropic plates using quasi 3D sinusoidal shear deformation theory", Geomech. Eng., 16(2), 141-150. https://doi.org/10.12989/gae.2018.16.2.141.
  86. Safarpour, M., Ghabussi, A., Ebrahimi, F., Habibi, M. and Safarpour, H. (2020), "Frequency characteristics of FG-GPLRC viscoelastic thick annular plate with the aid of GDQM", Thin-Wall. Struct., 150, 106683. https://doi.org/10.1016/j.tws.2020.106683.
  87. Sahmani, S. and Aghdam, M. (2017), "A nonlocal strain gradient hyperbolic shear deformable shell model for radial postbuckling analysis of functionally graded multilayer GPLRC nanoshells", Compos. Struct., 178, 97-109. https://doi.org/10.1016/j.compstruct.2017.06.062.
  88. Sahmani, S. and Aghdam, M. (2017), "Nonlinear instability of axially loaded functionally graded multilayer graphene plateletreinforced nanoshells based on nonlocal strain gradient elasticity theory", Int. J. Mech. Sci., 131, 95-106. https://doi.org/10.1016/j.ijmecsci.2017.06.052.
  89. Sahmani, S., Aghdam, M.M. and Rabczuk, T. (2018), "Nonlocal strain gradient plate model for nonlinear large-amplitude vibrations of functionally graded porous micro/nano-plates reinforced with GPLs", Compos. Struct., 198, 51-62. https://doi.org/10.1016/j.compstruct.2018.05.031.
  90. Semmah, A., Heireche, H., Bousahla, A.A. and Tounsi, A. (2019), "Thermal buckling analysis of SWBNNT on Winkler foundation by non local FSDT", Advan. Nano Res., 7(2), 89. https://doi.org/10.12989/anr.2019.7.2.089.
  91. Shafiei, N., Mirjavadi, S.S., Afshari, B.M., Rabby, S. and Hamouda, A. (2017), "Nonlinear thermal buckling of axially functionally graded micro and nanobeams", Compos. Struct., 168, 428-439. https://doi.org/10.1016/j.compstruct.2017.02.048.
  92. Shahsiah, R. and Eslami, M. (2003), "Thermal buckling of functionally graded cylindrical shell", J. Therm. Stresses. 26(3), 277-294. https://doi.org/10.1080/713855892.
  93. Shi, G., Araby, S., Gibson, C.T., Meng, Q., Zhu, S. and Ma, J. (2018), "Graphene platelets and their polymer composites: fabrication, structure, properties, and applications", Advan. Funct. Mater., 28(19), 1706705. https://doi.org/10.1002/adfm.201706705.
  94. Shi, M., Narayanasamy, M., Yang, C., Zhao, L., Jiang, J., Angaiah, S. and Yan, C. (2020), "3D interpenetrating assembly of partially oxidized MXene confined Mn-Fe bimetallic oxide for superior energy storage in ionic liquid", Electrochimica Acta. 334, 135546. https://doi.org/10.1016/j.electacta.2019.135546.
  95. Shi, M., Xiao, P., Lang, J., Yan, C. and Yan, X. (2020), "Porous g-C3N4 and MXene dual-confined FeOOH quantum dots for superior energy storage in an ionic liquid", Advan. Science. 7(2), 1901975. https://doi.org/10.1002/advs.201901975.
  96. Shokrgozar, A., Ghabussi, A., Ebrahimi, F., Habibi, M. and Safarpour, H. (2020), "Viscoelastic dynamics and static responses of a graphene nanoplatelets-reinforced composite cylindrical microshell", Mech. Based Des. Struct. Mach., 1-28. https://doi.org/10.1080/15397734.2020.1719509.
  97. Song, M., Kitipornchai, S. and Yang, J. (2017), "Free and forced vibrations of functionally graded polymer composite plates reinforced with graphene nanoplatelets", Compos. Struct., 159, 579-588. https://doi.org/10.1016/j.compstruct.2016.09.070.
  98. Tadi Beni, Y., Mehralian, F. and Zeighampour, H. (2016), "The modified couple stress functionally graded cylindrical thin shell formulation", Mech. Advan. Mater. Struct., 23(7), 791-801. https://doi.org/10.1080/15376494.2015.1029167.
  99. Tounsi, A., Al-Dulaijan, S., Al-Osta, M.A., Chikh, A., Al-Zahrani, M., Sharif, A. and Tounsi, A. (2020), "A four variable trigonometric integral plate theory for hygro-thermo-mechanical bending analysis of AFG ceramic-metal plates resting on a twoparameter elastic foundation", Steel Compos. Struct., 34(4), 511-524. https://doi.org/10.12989/scs.2020.34.4.511.
  100. Wang, B., Zhang, L., Ma, H., Wang, H. and Wan, S. (2019), "Parallel LSTM-based regional integrated energy system multienergy source-load information interactive energy prediction", Complexity. 2019. https://doi.org/10.1155/2019/7414318.
  101. Wang, J., Huang, Y., Wang, T., Zhang, C. and hui Liu, Y. (2020), "Fuzzy finite-time stable compensation control for a building structural vibration system with actuator failures", Appl. Soft Comput., 106372. ttps://doi.org/10.1016/j.asoc.2020.106372.
  102. Wang, M., Guo, Y., Wang, B., Luo, H., Zhang, X., Wang, Q., Zhang, Y., Wu, H., Liu, H. and Dou, S. (2020), "An engineered self-supported electrocatalytic cathode and dendrite-free composite anode based on 3D double-carbon hosts for advanced Li-SeS 2 batteries", J. Mater. Chemistry A. 8(6), 2969-2983. https://doi.org/10.1039/c9ta11124g
  103. Wang, P., Yao, T., Li, Z., Wei, W., Xie, Q., Duan, W. and Han, H. (2020), "A superhydrophobic/electrothermal synergistically anti-icing strategy based on graphene composite", Compos. Sci. Technol., 198, 108307. https://doi.org/10.1016/j.compscitech.2020.108307.
  104. Wang, Y., Feng, C., Santiuste, C., Zhao, Z. and Yang, J. (2019), "Buckling and postbuckling of dielectric composite beam reinforced with Graphene Platelets (GPLs)", Aerosp. Sci. Technol., 91, 208-218. https://doi.org/10.1016/j.ast.2019.05.008.
  105. Wang, Y., Yao, M., Ma, R., Yuan, Q., Yang, D., Cui, B., Ma, C., Liu, M. and Hu, D. (2020), "Design strategy of barium titanate/polyvinylidene fluoride-based nanocomposite films for high energy storage", J. Mater. Chemistry A. 8(3), 884-917. https://doi.org/10.1039/C9TA11527G.
  106. Wu, H., Kitipornchai, S. and Yang, J. (2017), "Thermal buckling and postbuckling of functionally graded graphene nanocomposite plates", Mater. Des., 132, 430-441. https://doi.org/10.1016/j.matdes.2017.07.025.
  107. Xu, H.B., Zhang, C.W., Li, H., Tan, P., Ou, J.P. and Zhou, F.L. (2014), "Active mass driver control system for suppressing wind-induced vibration of the Canton Tower", Smart Struct. Syst., 13(2), 281-303. https://doi.org/10.12989/sss.2014.13.2.281.
  108. Yang, C., Gao, F. and Dong, M. (2020), "Energy efficiency modeling of integrated energy system in coastal areas", J. Coastal Res., 103(SI), 995-1001. https://doi.org/10.2112/SI103-207.1.
  109. Yang, J., Chen, D. and Kitipornchai, S. (2018), "Buckling and free vibration analyses of functionally graded graphene reinforced porous nanocomposite plates based on Chebyshev-Ritz method", Compos. Struct., 193, 281-294. https://doi.org/10.1016/j.compstruct.2018.03.090.
  110. Yang, Z., Xu, P., Wei, W., Gao, G., Zhou, N. and Wu, G. (2020), "Influence of the crosswind on the pantograph arcing dynamics", IEEE Transactions Plasma Sci., 48(8), 2822-2830. https://doi.org/10.1109/TPS.2020.3010553.
  111. Yavari, F., Rafiee, M., Rafiee, J., Yu, Z.Z. and Koratkar, N. (2010), "Dramatic increase in fatigue life in hierarchical graphene composites", ACS Appl. Mater. Interfaces. 2(10), 2738-2743. https://doi.org/10.1021/am100728r.
  112. Younsi, A., Tounsi, A., Zaoui, F.Z., Bousahla, A.A. and Mahmoud, S. (2018), "Novel quasi-3D and 2D shear deformation theories for bending and free vibration analysis of FGM plates", Geomech. Eng., 14(6), 519-532. https://doi.org/10.12989/gae.2018.14.6.519.
  113. Yu, D., Mao, Y., Gu, B., Nojavan, S., Jermsittiparsert, K. and Nasseri, M. (2020), "A new LQG optimal control strategy applied on a hybrid wind turbine/solid oxide fuel cell/in the presence of the interval uncertainties", Sustain. Energy, Grids Networks. 21, 100296. https://doi.org/10.1016/j.segan.2019.100296.
  114. Zarga, D., Tounsi, A., Bousahla, A.A., Bourada, F. and Mahmoud, S. (2019), "Thermomechanical bending study for functionally graded sandwich plates using a simple quasi-3D shear deformation theory", Steel Compos. Struct., 32(3), 389-410. https://doi.org/10.12989/scs.2019.32.3.389.
  115. Zhang, C. (2014), "Control force characteristics of different control strategies for the wind-excited 76-story benchmark building structure", Advan. Struct. Eng., 17(4), 543-559. https://doi.org/10.1260/1369-4332.17.4.543.
  116. Zhang, C. and Ou, J. (2008), "Control structure interaction of electromagnetic mass damper system for structural vibration control", J. Eng. Mech., 134(5), 428-437. https://doi.org/10.1061/(ASCE)0733-9399(2008)134:5(428).
  117. Zhang, C. and Ou, J. (2015), "Modeling and dynamical performance of the electromagnetic mass driver system for structural vibration control", Eng. Struct., 82, 93-103. https://doi.org/10.1016/j.engstruct.2014.10.029.
  118. Zhang, C. and Wang, H. (2019), "Robustness of the active rotary inertia driver system for structural swing vibration control subjected to multi-type hazard excitations", Appl. Sci., 9(20), 4391. https://doi.org/10.3390/app9204391.
  119. Zhang, C. and Wang, H. (2020), "Swing vibration control of suspended structures using the Active Rotary Inertia Driver system: Theoretical modeling and experimental verification", Struct. Control Health Monit., 27(6), e2543. https://doi.org/10.1002/stc.2543.
  120. Zhang, S., Pak, R.Y. and Zhang, J. (2020), "Vertical timeharmonic coupling vibration of an impermeable, rigid, circular plate resting on a finite, poroelastic soil layer", Acta Geotechnica. 1-25. https://doi.org/10.1007/s11440-020-01067-8.
  121. Zhang, W. (2020), "Parameter Adjustment Strategy and Experimental Development of Hydraulic System for Wave Energy Power Generation", Symmetry. 12(5), 711. https://doi.org/10.3390/sym12050711.
  122. Zhao, S., Zhao, Z., Yang, Z., Ke, L., Kitipornchai, S. and Yang, J. (2020), "Functionally graded graphene reinforced composite structures: A review", Eng. Struct., 210, 110339. https://doi.org/10.1016/j.engstruct.2020.110339.
  123. Zhao, X., Ye, Y., Ma, J., Shi, P. and Chen, H. (2020), "Construction of electric vehicle driving cycle for studying electric vehicle energy consumption and equivalent emissions", Environ. Sci. Pollut. Res., 1-15. https://doi.org/10.1007/s11356- 020-09094-4.
  124. Zhu, L., Kong, L. and Zhang, C. (2020), "Numerical study on hysteretic behaviour of horizontal-connection and energydissipation structures developed for prefabricated shear walls", Appl. Sci., 10(4), 1240. https://doi.org/10.3390/app10041240.
  125. Zhu, L., Zhang, C., Guan, X., Uy, B., Sun, L. and Wang, B. (2018), "The multi-axial strength performance of composited structural BCW members subjected to shear forces", Steel Compos. Struct., 27(1), 75-87. https://doi.org/10.12989/scs.2018.27.1.075.
  126. Zuo, X., Dong, M., Gao, F. and Tian, S. (2020), "The modeling of the electric heating and cooling system of the integrated energy system in the coastal area", J. Coast. Res., 103(SI), 1022-1029. https://doi.org/10.2112/SI103-213.1.