DOI QR코드

DOI QR Code

Free vibration and static analyses of metal-ceramic FG beams via high-order variational MFEM

  • Madenci, Emrah (Department of Civil Engineering, Necmettin Erbakan University)
  • Received : 2020.11.29
  • Accepted : 2021.05.03
  • Published : 2021.06.10

Abstract

There is not enough mixed finite element method (MFEM) model developed for static and dynamic analysis of functionally graded material (FGM) beams in the literature. The main purpose of this study is to develop a reliable and efficient computational modeling using an efficient functional in MFEM for free vibration and static analysis of FGM composite beams subject to high order shear deformation effects. The modeling of material properties was performed using mixture rule and Mori-Tanaka scheme which are more realistic determination techniques. This method based on the assumption that a two phase composite material consisting of matrix reinforced by spherical particles, randomly distributed in the beam. To explain the displacement components of the shear deformation effects, it was accepted that the shear deformation effects change sinusoidal. Partial differential field equations were obtained with the help of variational methods and then these equations were transformed into a novel functional for FGM beams with the help of Gateaux differential derivative operator. Thanks to the Gateaux differential method, the compatibility of the field equations was checked, and the field equations and boundary conditions were reflected to the function. A MFEM model was developed with a total of 10 degrees of freedom to apply the obtained functional. In the numerical applications section, free vibration and flexure problems solutions of FGM composite beams were compared with those predicted by other theories to show the effects of shear deformation, thickness changing and boundary conditions.

Keywords

Acknowledgement

The research described in this paper was no financially supported.

References

  1. Abdelaziz, H.H., Meziane, M.A.A., Bousahla, A.A., Tounsi, A., Mahmoud, S. and Alwabli, A.S. (2017), "An efficient hyperbolic shear deformation theory for bending, buckling and free vibration of FGM sandwich plates with various boundary conditions", Steel Compos. Struct., 25(6), 693-704. https://doi.org/10.12989/scs.2017.25.6.693.
  2. Akbas, S.D. (2018), "Forced vibration analysis of functionally graded porous deep beams", Compos. Struct., 186, 293-302. https://doi.org/10.1016/j.compstruct.2017.12.013.
  3. Akoz, A. and Kadioglu, F. (1996), "The mixed finite element solution of circular beam on elastic foundation", Comput. Struct., 60(4), 643-651. https://doi.org/10.1016/0045-7949(95)00418-1.
  4. Akoz, A., Omurtag, M. and Dogruoglu, A. (1991), "The mixed finite element formulation for three-dimensional bars", Int. J. Solid. Struct., 28(2), 225-234. https://doi.org/10.1016/0020-7683(91)90207-V.
  5. Akoz, A. and Ozutok, A. (2000), "A functional for shells of arbitrary geometry and a mixed finite element method for parabolic and circular cylindrical shells", Int. J. Numer. Method. Eng., 47(12), 1933-1981. https://doi.org/10.1002/(SICI)1097-0207(20000430)47:12<1933::AID-NME860>3.0.CO;2-0.
  6. Akoz, Y. and Kadioglu, F. (1999), "The mixed finite element method for the quasi-static and dynamic analysis of viscoelastic timoshenko beams", Int. J. Numer. Method. Eng., 44(12), 1909-1932. https://doi.org/10.1002/(SICI)1097-0207(19990430)44:12<1909::AID-NME573>3.0.CO;2-P.
  7. Alimirzaei, S., Mohammadimehr, M. and Tounsi, A. (2019), "Nonlinear analysis of viscoelastic micro-composite beam with geometrical imperfection using FEM: MSGT electro-magnetoelastic bending, buckling and vibration solutions", Struct. Eng. Mech., 71(5), 485-502. https://doi.org/10.12989/sem.2019.71.5.485.
  8. Allam, O., Draiche, K., Bousahla, A.A., Bourada, F., Tounsi, A., Benrahou, K.H., Mahmoud, S., Adda Bedia, E. and Tounsi, A. (2020), "A generalized 4-unknown refined theory for bending and free vibration analysis of laminated composite and sandwich plates and shells", Comput. Concrete, 26(2), 185-201. https://doi.org/10.12989/cac.2020.26.2.185.
  9. Anirudh, B., Ganapathi, M., Anant, C. and Polit, O. (2019), "A comprehensive analysis of porous graphene-reinforced curved beams by finite element approach using higher-order structural theory: Bending, vibration and buckling", Compos. Struct., 222, 110899. https://doi.org/10.1016/j.compstruct.2019.110899.
  10. Aria, A. and Friswell, M. (2019), "A nonlocal finite element model for buckling and vibration of functionally graded nanobeams", Compos. Part B: Eng., 166, 233-246. https://doi.org/10.1016/j.compositesb.2018.11.071.
  11. Aribas, U.N., Ermis, M., Eratli, N. and Omurtag, M.H. (2019), "The static and dynamic analyses of warping included composite exact conical helix by mixed FEM", Compos. Part B: Eng., 160, 285-297. https://doi.org/10.1016/j.compositesb.2018.10.018.
  12. Arioui, O., Belakhdar, K., Kaci, A. and Tounsi, A. (2018), "Thermal buckling of FGM beams having parabolic thickness variation and temperature dependent materials", Steel Compos. Struct., 27(6), 777-788. https://doi.org/10.12989/scs.2018.27.6.777.
  13. Aydogdu, M. and Taskin, V. (2007), "Free vibration analysis of functionally graded beams with simply supported edges", Mater. Design. 28(5), 1651-1656. https://doi.org/10.1016/j.matdes.2006.02.007.
  14. Badriev, I., Bujanov, V.J., Makarov, M. and Kalacheva, N. (2019). "Gateaux and Frechet derivatives of the operator of geometrically nonlinear bending problem of sandwich plate", J. Phys.: Conference Series. https://doi.org/10.1088/1742-6596/1158/2/022015.
  15. Barka, M., Benrahou, K.H., Bakora, A. and Tounsi, A. (2016), "Thermal post-buckling behavior of imperfect temperature-dependent sandwich FGM plates resting on Pasternak elastic foundation", Steel Compos. Struct., 22(1), 91-112. https://doi.org/10.12989/scs.2016.22.1.091.
  16. Bekkaye, T.H.L., Fahsi, B., Bousahla, A.A., Bourada, F., Tounsi, A., Benrahou, K.H., Tounsi, A. and Al-Zahrani, M.M. (2020), "Porosity-dependent mechanical behaviors of FG plate using refined trigonometric shear deformation theory", Comput. Concrete, 26(5), 439-450. https://doi.org/10.12989/cac.2020.26.5.439.
  17. Bendenia, N., Zidour, M., Bousahla, A.A., Bourada, F., Tounsi, A., Benrahou, K.H., Bedia, E., Mahmoud, S. and Tounsi, A. (2020), "Deflections, stresses and free vibration studies of FG-CNT reinforced sandwich plates resting on Pasternak elastic foundation", Comput. Concrete, 26(3), 213-226. https://doi.org/10.12989/cac.2020.26.3.213.
  18. Birman, V. and Byrd, L.W. (2007), "Modeling and analysis of functionally graded materials and structures", Appl. Mech. Rev., 60(5), 195-216. https://doi.org/10.1115/1.2777164.
  19. Bouderba, B. (2018), "Bending of FGM rectangular plates resting on non-uniform elastic foundations in thermal environment using an accurate theory", Steel Compos. Struct., 27(3), 311-325. https://doi.org/10.12989/scs.2018.27.3.311.
  20. Boussoula, A., Boucham, B., Bourada, M., Bourada, F., Tounsi, A., Bousahla, A.A. and Tounsi, A. (2020), "A simple nth-order shear deformation theory for thermomechanical bending analysis of different configurations of FG sandwich plates", Smart Struct. Syst., 25(2), 197-218. https://doi.org/10.12989/sss.2020.25.2.197.
  21. Cao, D., Gao, Y., Yao, M. and Zhang, W. (2018), "Free vibration of axially functionally graded beams using the asymptotic development method", Eng. Struct., 173, 442-448. https://doi.org/10.1016/j.engstruct.2018.06.111.
  22. Castellano, A., Foti, P., Fraddosio, A., Marzano, S. and Piccioni, M.D. (2014), "Mechanical characterization of CFRP composites by ultrasonic immersion tests: Experimental and numerical approaches", Compos. Part B: Eng., 66, 299-310. https://doi.org/10.1016/j.compositesb.2014.04.024
  23. Castellano, A., Fraddosio, A. and Piccioni, M.D. (2018), "Quantitative analysis of QSI and LVI damage in GFRP unidirectional composite laminates by a new ultrasonic approach", Compos. Part B: Eng., 151, 106-117. https://doi.org/10.1016/j.compositesb.2018.06.003.
  24. Chen, M., Jin, G., Zhang, Y., Niu, F. and Liu, Z. (2019), "Three-dimensional vibration analysis of beams with axial functionally graded materials and variable thickness", Compos. Struct., 207, 304-322. https://doi.org/10.1016/j.compstruct.2018.09.029.
  25. Chikh, A., Bakora, A., Heireche, H., Houari, M.S.A., Tounsi, A. and Bedia, E. (2016), "Thermo-mechanical postbuckling of symmetric S-FGM plates resting on Pasternak elastic foundations using hyperbolic shear deformation theory", Struct. Eng. Mech., 57(4), 617-639. https://doi.org/10.12989/sem.2016.57.4.617.
  26. Chikr, S.C., Kaci, A., Bousahla, A.A., Bourada, F., Tounsi, A., Bedia, E., Mahmoud, S., Benrahou, K.H. and Tounsi, A. (2020), "A novel four-unknown integral model for buckling response of FG sandwich plates resting on elastic foundations under various boundary conditions using Galerkin's approach", Geomech. Eng., 21(5), 471-487. https://doi.org/10.12989/gae.2020.21.5.471.
  27. Daouadj, T.H. and Adim, B. (2017), "Mechanical behaviour of FGM sandwich plates using a quasi-3D higher order shear and normal deformation theory", Struct. Eng. Mech., 61(1), 49-63. https://doi.org/10.12989/sem.2017.61.1.049.
  28. Darilmaz, K. (2015), "Vibration analysis of functionally graded material (FGM) grid systems", Steel Compos. Struct., 18(2), 395-408. https://doi.org/10.12989/scs.2015.18.2.395.
  29. El Moumen, A., Tarfaoui, M., Lafdi, K. and Benyahia, H. (2017), "Dynamic properties of carbon nanotubes reinforced carbon fibers/epoxy textile composites under low velocity impact", Compos. Part B: Eng.. 125, 1-8. https://doi.org/10.1016/j.compositesb.2017.05.065.
  30. El Moumen, A., Tarfaoui, M., Nachtane, M. and Lafdi, K. (2019), "Carbon nanotubes as a player to improve mechanical shock wave absorption", Compos. Part B: Eng., 164, 67-71. https://doi.org/10.1016/j.compositesb.2018.11.072.
  31. Fariborz, J. and Batra, R. (2019), "Free vibration of bi-directional functionally graded material circular beams using shear deformation theory employing logarithmic function of radius", Compos. Struct., 210, 217-230. https://doi.org/10.1016/j.compstruct.2018.11.036.
  32. Ferreira, A., Batra, R., Roque, C., Qian, L. and Martins, P. (2005), "Static analysis of functionally graded plates using third-order shear deformation theory and a meshless method", Compos. Struct., 69(4), 449-457. https://doi.org/10.1016/j.compstruct.2004.08.003.
  33. Filippi, M., Carrera, E. and Zenkour, A. (2015), "Static analyses of FGM beams by various theories and finite elements", Compos. Part B: Eng., 72, 1-9. https://doi.org/10.1016/j.compositesb.2014.12.004.
  34. Frikha, A., Hajlaoui, A., Wali, M. and Dammak, F. (2016), "A new higher order C0 mixed beam element for FGM beams analysis", Compos. Part B: Eng., 106, 181-189. https://doi.org/10.1016/j.compositesb.2016.09.024.
  35. Gan, B.S., Trinh, T.H., Le, T.H. and Nguyen, D.K. (2015), "Dynamic response of non-uniform Timoshenko beams made of axially FGM subjected to multiple moving point loads", Struct. Eng. Mech., 53(5), 981-995. https://doi.org/10.12989/sem.2015.53.5.981.
  36. Ghayesh, M.H. (2018), "Nonlinear vibrations of axially functionally graded Timoshenko tapered beams", J. Comput. Nonlinear Dynam., 13(4). https://doi.org/10.1115/1.4039191.
  37. Ghayesh, M.H. (2019), "Viscoelastic mechanics of Timoshenko functionally graded imperfect microbeams", Compos. Struct., 225, 110974. https://doi.org/10.1016/j.compstruct.2019.110974.
  38. Ghayesh, M.H. (2019), "Mechanics of viscoelastic functionally graded microcantilevers", Eur. J. Mech. - A/Solids, 73, 492-499. https://doi.org/10.1016/j.euromechsol.2018.09.001.
  39. Gemi, L., Kara, M. and Avci, A. (2016), "Low velocity impact response of prestressed functionally graded hybrid pipes", Compos. Part B: Eng., 106, 154-163. https://doi.org/10.1016/j.compositesb.2016.09.025.
  40. Golmakani, M. and Kadkhodayan, M. (2011), "Nonlinear bending analysis of annular FGM plates using higher-order shear deformation plate theories", Compos. Struct., 93(2), 973-982. https://doi.org/10.1016/j.compstruct.2010.06.024.
  41. Hadji, L., Daouadji, T., Tounsi, A. and Bedia, E. (2014), "A higher order shear deformation theory for static and free vibration of FGM beam", Steel Compos. Struct., 16(5), 507-519. https://doi.org/10.12989/scs.2014.16.5.507.
  42. Hadji, L., Khelifa, Z. and El Abbes, A.B. (2016), "A new higher order shear deformation model for functionally graded beams", KSCE J. Civil Eng., 20(5), 1835-1841. https://doi.org/10.1007/s12205-015-0252-0.
  43. Hadji, L., Meziane, M., Abdelhak, Z., Daouadji, T.H. and Bedia, E. (2016), "Static and dynamic behavior of FGM plate using a new first shear deformation plate theory", Struct. Eng. Mech., 57(1), 127-140. https://doi.org/10.12989/sem.2016.57.1.127.
  44. Hussain, M., Naeem, M.N., Khan, M.S. and Tounsi, A. (2020), "Computer-aided approach for modelling of FG cylindrical shell sandwich with ring supports", Comput. Concrete, 25(5), 411-425. https://doi.org/10.12989/cac.2020.25.5.411.
  45. Kaddari, M., Kaci, A., Bousahla, A.A., Tounsi, A., Bourada, F., Tounsi, A., Bedia, E. and Al-Osta, M.A. (2020), "A study on the structural behaviour of functionally graded porous plates on elastic foundation using a new quasi-3D model: bending and free vibration analysis", Comput. Concrete, 25(1), 37-57. https://doi.org/10.12989/cac.2020.25.1.037.
  46. Kahya, V. and Turan, M. (2018), "Vibration and stability analysis of functionally graded sandwich beams by a multi-layer finite element", Compos. Part B: Eng., 146, 198-212. https://doi.org/10.1016/j.compositesb.2018.04.011.
  47. Karamanli, A. and Vo, T.P. (2018), "Size dependent bending analysis of two directional functionally graded microbeams via a quasi-3D theory and finite element method", Compos. Part B: Eng., 144, 171-183. https://doi.org/10.1016/j.compositesb.2018.02.030.
  48. Kitipornchai, S., Yang, J. and Liew, K. (2006), "Random vibration of the functionally graded laminates in thermal environments", Comput. Method. Appl. Mech. Eng., 195(9-12), 1075-1095. https://doi.org/10.1016/j.cma.2005.01.016.
  49. Li, L., Liao, W.H., Zhang, D. and Zhang, Y. (2019), "Vibration control and analysis of a rotating flexible FGM beam with a lumped mass in temperature field", Compos. Struct., 208, 244-260. https://doi.org/10.1016/j.compstruct.2018.09.070.
  50. Li, W., Ma, H. and Gao, W. (2019), "A higher-order shear deformable mixed beam element model for accurate analysis of functionally graded sandwich beams", Compos. Struct., 221, 110830. https://doi.org/10.1016/j.compstruct.2019.04.002.
  51. Li, X.F., Wang, B.L. and Han, J.C. (2010), "A higher-order theory for static and dynamic analyses of functionally graded beams", Arch. Appl. Mech., 80(10), 1197-1212. https://doi.org/10.1007/s00419-010-0435-6.
  52. Ma, L. and Wang, T. (2003), "Nonlinear bending and postbuckling of a functionally graded circular plate under mechanical and thermal loadings", Int. J. Solid. Struct., 40(13-14), 3311-3330. https://doi.org/10.1016/S0020-7683(03)00118-5.
  53. Madenci, E. (2019), "A refined functional and mixed formulation to static analyses of fgm beams", Struct. Eng. Mech., 69(4), 427-437. https://doi.org/10.12989/sem.2019.69.4.427.
  54. Madenci, E. and Gulcu, S. (2020), "Optimization of flexure stiffness of FGM beams via artificial neural networks by mixed FEM", Struct. Eng. Mech., 75(5), 633-642. https://doi.org/10.12989/sem.2020.75.5.633.
  55. Madenci, E., Ozkilic, Y.O. and Gemi, L. (2020), "Buckling and free vibration analyses of pultruded GFRP laminated composites: Experimental, numerical and analytical investigations", Compos. Struct., 254, 112806. https://doi.org/10.1016/j.compstruct.2020.112806.
  56. Madenci, E., Ozkilic, Y.O. and Gemi, L. (2020), "Experimental and theoretical investigation on flexure performance of pultruded GFRP composite beams with damage analyses", Compos. Struct., 242, 112162. https://doi.org/10.1016/j.compstruct.2020.112162.
  57. Madenci, E. and Ozutok, A. (2020), "Variational approximate for high order bending analysis of laminated composite plates", Struct. Eng. Mech., 73(1), 97-108. https://doi.org/10.12989/sem.2020.73.1.097.
  58. Menasria, A., Kaci, A., Bousahla, A.A., Bourada, F., Tounsi, A., Benrahou, K.H., Tounsi, A., Adda Bedia, E. and Mahmoud, S. (2020), "A four-unknown refined plate theory for dynamic analysis of FG-sandwich plates under various boundary conditions", Steel Compos. Struct., 36(3), 355-367. https://doi.org/10.12989/scs.2020.36.3.355.
  59. Mollamahmutoglu, C. and Mercan, A. (2019), "A novel functional and mixed finite element analysis of functionally graded micro-beams based on modified couple stress theory", Compos. Struct., 223, 110950. https://doi.org/10.1016/j.compstruct.2019.110950.
  60. Mori, T. and Tanaka, K. (1973), "Average stress in matrix and average elastic energy of materials with misfitting inclusions", Acta Metallurgica. 21(5), 571-574. https://doi.org/10.1016/0001-6160(73)90064-3.
  61. Nguyen, D.K. and Tran, T.T. (2018), "Free vibration of tapered BFGM beams using an efficient shear deformable finite element model", Steel Compos. Struct., 29(3), 363-377. https://doi.org/10.12989/scs.2018.29.3.363.
  62. Nguyen, T.K., Vo, T.P. and Thai, H.T. (2013), "Static and free vibration of axially loaded functionally graded beams based on the first-order shear deformation theory", Compos. Part B: Eng., 55, 147-157. https://doi.org/10.1016/j.compositesb.2013.06.011.
  63. Nguyen, T.T., Kim, N.I. and Lee, J. (2016), "Free vibration of thin-walled functionally graded open-section beams", Compos. Part B: Eng., 95, 105-116. https://doi.org/10.1016/j.compositesb.2016.03.057
  64. Oden, J.T. and Reddy, J.N. (1976), "On mixed finite element approximations", SIAM J. Numer. Anal., 13(3), 393-404. https://doi.org/10.1137/0713035.
  65. Ozutok, A., Madenci, E. and Kadioglu, F. (2014), "Free vibration analysis of angle-ply laminate composite beams by mixed finite element formulation using the Gateaux differential", Sci. Eng. Compos. Mater., 21(2), 257-266. https://doi.org/10.1515/secm-2013-0043.
  66. Ozutok, A. and Madenci, E. (2013), "Free vibration analysis of cross-ply laminated composite beams by mixed finite element formulation", Int. J. Struct. Stab. Dynam., 13(2), 1250056. https://doi.org/10.1142/S0219455412500563.
  67. Ozutok, A. and Madenci, E. (2017), "Static analysis of laminated composite beams based on higher-order shear deformation theory by using mixed-type finite element method", Int. J. Mech. Sci., 130, 234-243. https://doi.org/10.1016/j.ijmecsci.2017.06.013.
  68. Pradhan, K. and Chakraverty, S. (2013), "Free vibration of Euler and Timoshenko functionally graded beams by Rayleigh-Ritz method", Compos. Part B: Eng., 51, 175-184. https://doi.org/10.1016/j.compositesb.2013.02.027.
  69. Pradhan, K.K. and Chakraverty, S. (2015), "Generalized power-law exponent based shear deformation theory for free vibration of functionally graded beams", Appl. Math. Comput.. 268, 1240-1258. https://doi.org/10.1016/j.amc.2015.07.032.
  70. Rabhi, M., Benrahou, K.H., Kaci, A., Houari, M.S.A., Bourada, F., Bousahla, A.A., Tounsi, A., Adda Bedia, E., Mahmoud, S. and Tounsi, A. (2020), "A new innovative 3-unknowns HSDT for buckling and free vibration of exponentially graded sandwich plates resting on elastic foundations under various boundary conditions", Geomech. Eng., 22(2), 119-132. https://doi.org/10.12989/gae.2020.22.2.119.
  71. Rafiee, R. (2013), "Experimental and theoretical investigations on the failure of filament wound GRP pipes", Compos. Part B: Eng., 45(1), 257-267. https://doi.org/10.1016/j.compositesb.2012.04.009.
  72. Rafiee, R. and Eskandariyun, A. (2017), "Comparative study on predicting Young's modulus of graphene sheets using nano-scale continuum mechanics approach", Physica E: Low-Dimensional Syst. Nanostruct., 90, 42-48. https://doi.org/10.1016/j.physe.2017.03.006.
  73. Rafiee, R., Ghorbanhosseini, A. and Rezaee, S. (2019), "Theoretical and numerical analyses of composite cylinders subjected to the low velocity impact", Compos. Struct., 226, 111230. https://doi.org/10.1016/j.compstruct.2019.111230.
  74. Rahmani, M.C., Kaci, A., Bousahla, A.A., Bourada, F., Tounsi, A., Bedia, E., Mahmoud, S., Benrahou, K.H. and Tounsi, A. (2020), "Influence of boundary conditions on the bending and free vibration behavior of FGM sandwich plates using a fourunknown refined integral plate theory", Comput. Concrete, 25(3), 225-244. https://doi.org/10.12989/cac.2020.25.3.225.
  75. Reddy, J.N. (2002), Energy principles and variational methods in applied mechanics, John Wiley & Sons
  76. Reddy, J.N. (2004), Mechanics of laminated composite plates and shells: theory and analysis, CRC press
  77. Refrafi, S., Bousahla, A.A., Bouhadra, A., Menasria, A., Bourada, F., Tounsi, A., Bedia, E., Mahmoud, S., Benrahou, K.H. and Tounsi, A. (2020), "Effects of hygro-thermo-mechanical conditions on the buckling of FG sandwich plates resting on elastic foundations", Comput. Concrete, 25(4), 311-325. https://doi.org/10.12989/cac.2020.25.4.311.
  78. Rouabhia, A., Chikh, A., Bousahla, A.A., Bourada, F., Heireche, H., Tounsi, A., Benrahou, K.H., Tounsi, A. and Al-Zahrani, M.M. (2020), "Physical stability response of a SLGS resting on viscoelastic medium using nonlocal integral first-order theory", Steel Compos. Struct., 37(6), 695. http://dx.doi.org/10.12989/scs.2020.37.6.695.
  79. Shahmohammadi, M.A., Azhari, M. and Saadatpour, M.M. (2020), "Free vibration analysis of sandwich FGM shells using isogeometric B-Spline finite strip method", Steel Compos. Struct., 34(3), 361-376. https://doi.org/10.12989/scs.2020.34.3.361.
  80. Shen, H.S. (2016), Functionally graded materials: nonlinear analysis of plates and shells, CRC press
  81. Shokrieh, M. and Rafiee, R. (2010), "A review of the mechanical properties of isolated carbon nanotubes and carbon nanotube composites", Mech. Compos. Mater., 46(2), 155-172. https://doi.org/10.1007/s11029-010-9135-0.
  82. Su, Z., Jin, G. and Ye, T. (2018), "Vibration analysis of multiple-stepped functionally graded beams with general boundary conditions", Compos. Struct., 186, 315-323. https://doi.org/10.1016/j.compstruct.2017.12.018.
  83. Simsek, M. (2010), "Fundamental frequency analysis of functionally graded beams by using different higher-order beam theories", Nuclear Eng. Design, 240(4), 697-705. https://doi.org/10.1016/j.nucengdes.2009.12.013.
  84. Simsek, M. (2010), "Non-linear vibration analysis of a functionally graded Timoshenko beam under action of a moving harmonic load", Compos. Struct., 92(10), 2532-2546. https://doi.org/10.1016/j.compstruct.2010.02.008.
  85. Tang, Y., Lv, X. and Yang, T. (2019), "Bi-directional functionally graded beams: asymmetric modes and nonlinear free vibration", Compos. Part B: Eng., 156, 319-331. https://doi.org/10.1016/j.compositesb.2018.08.140.
  86. Tarfaoui, M., El Moumen, A. and Lafdi, K. (2017), "Progressive damage modeling in carbon fibers/carbon nanotubes reinforced polymer composites", Compos. Part B: Eng., 112, 185-195. https://doi.org/10.1016/j.compositesb.2016.12.056.
  87. Tarfaoui, M., Lafdi, K. and El Moumen, A. (2016), "Mechanical properties of carbon nanotubes based polymer composites", Compos. Part B: Eng., 103, 113-121. https://doi.org/10.1016/j.compositesb.2016.08.016.
  88. Thai, H.T. and Kim, S.E. (2013), "A simple higher-order shear deformation theory for bending and free vibration analysis of functionally graded plates", Compos. Struct., 96, 165-173. https://doi.org/10.1016/j.compstruct.2012.08.025.
  89. Thai, H.T. and Vo, T.P. (2012), "Bending and free vibration of functionally graded beams using various higher-order shear deformation beam theories", Int. J. Mech. Sci., 62(1), 57-66. https://doi.org/10.1016/j.ijmecsci.2012.05.014.
  90. Thom, T.T. and Kien, N.D. (2018), "Free vibration analysis of 2-D FGM beams in thermal environment based on a new third-order shear deformation theory", Vietnam J. Mech., 40(2), 121-140.
  91. Tornabene, F. (2009), "Free vibration analysis of functionally graded conical, cylindrical shell and annular plate structures with a four-parameter power-law distribution", Comput. Method. Appl. M., 198(37-40), 2911-2935. https://doi.org/10.1016/j.cma.2009.04.011.
  92. Tornabene, F., Fantuzzi, N. and Bacciocchi, M. (2017), "Linear static response of nanocomposite plates and shells reinforced by agglomerated carbon nanotubes", Compos. Part B: Eng., 115, 449-476. https://doi.org/10.1016/j.compositesb.2016.07.011.
  93. Tornabene, F., Liverani, A. and Caligiana, G. (2011), "FGM and laminated doubly curved shells and panels of revolution with a free-form meridian: a 2-D GDQ solution for free vibrations", Int. J. Mech. Sci., 53(6), 446-470. https://doi.org/10.1016/j.ijmecsci.2011.03.007.
  94. Tornabene, F. and Viola, E. (2009), "Free vibration analysis of functionally graded panels and shells of revolution", Meccanica, 44(3), 255-281. https://doi.org/10.1007/s11012-008-9167-x.
  95. Tornabene, F. and Viola, E. (2013), "Static analysis of functionally graded doubly-curved shells and panels of revolution", Meccanica, 48(4), 901-930. https://doi.org/10.1007/s11012-012-9643-1.
  96. Tornabene, F., Viola, E. and Fantuzzi, N. (2013), "General higher-order equivalent single layer theory for free vibrations of doubly-curved laminated composite shells and panels", Compos. Struct., 104, 94-117. https://doi.org/10.1016/j.compstruct.2013.04.009.
  97. Tornabene, F., Viola, E. and Inman, D.J. (2009), "2-D differential quadrature solution for vibration analysis of functionally graded conical, cylindrical shell and annular plate structures", J. Sound Vib., 328(3), 259-290. https://doi.org/10.1016/j.jsv.2009.07.031.
  98. Tounsi, A., Al-Dulaijan, S., Al-Osta, M.A., Chikh, A., Al-Zahrani, M., Sharif, A. and Tounsi, A. (2020), "A four variable trigonometric integral plate theory for hygro-thermo-mechanical bending analysis of AFG ceramic-metal plates resting on a two-parameter elastic foundation", Steel Compos. Struct., 34(4), 511-524. https://doi.org/10.12989/scs.2020.34.4.511.
  99. Touratier, M. (1991), "An efficient standard plate theory", Int. J. Eng. Sci., 29(8), 901-916. https://doi.org/10.1016/0020-7225(91)90165-Y.
  100. Vainberg, M. (1974), Variational and Monotonic Operator Methods in the Theory of Nonlinear Equations, Wiley, New York
  101. Viola, E., Tornabene, F. and Fantuzzi, N. (2013), "General higherorder shear deformation theories for the free vibration analysis of completely doubly-curved laminated shells and panels", Compos. Struct., 95, 639-666. https://doi.org/10.1016/j.compstruct.2012.08.005.
  102. Vo, T.P., Thai, H.T., Nguyen, T.K. and Inam, F. (2014), "Static and vibration analysis of functionally graded beams using refined shear deformation theory", Meccanica, 49(1), 155-168. https://doi.org/10.1007/s11012-013-9780-1
  103. Vo, T.P., Thai, H.T., Nguyen, T.K., Inam, F. and Lee, J. (2015), "Static behaviour of functionally graded sandwich beams using a quasi-3D theory", Compos. Part B: Eng., 68, 59-74. https://doi.org/10.1016/j.compositesb.2014.08.030.
  104. Wu, D., Gao, W., Hui, D., Gao, K. and Li, K. (2018), "Stochastic static analysis of Euler-Bernoulli type functionally graded structures", Compos. Part B: Eng., 134, 69-80. https://doi.org/10.1016/j.compositesb.2017.09.050.
  105. Yang, J., Liew, K. and Kitipornchai, S. (2005), "Stochastic analysis of compositionally graded plates with system randomness under static loading", Int. J. Mech. Sci., 47(10), 1519-1541. https://doi.org/10.1016/j.ijmecsci.2005.06.006.
  106. Yousfi, M., Atmane, H.A., Meradjah, M., Tounsi, A. and Bennai, R. (2018), "Free vibration of FGM plates with porosity by a shear deformation theory with four variables", Struct. Eng. Mech., 66(3), 353-368. https://doi.org/10.12989/sem.2018.66.3.353.
  107. Zenkour, A.M. (2006), "Generalized shear deformation theory for bending analysis of functionally graded plates", Appl. Math. Model., 30(1), 67-84. https://doi.org/10.1016/j.apm.2005.03.009.
  108. Zhang, D.G. (2013), "Nonlinear bending analysis of FGM beams based on physical neutral surface and high order shear deformation theory", Compos. Struct., 100, 121-126. https://doi.org/10.1016/j.compstruct.2012.12.024.
  109. Zine, A., Bousahla, A.A., Bourada, F., Benrahou, K.H., Tounsi, A., Adda Bedia, E., Mahmoud, S. and Tounsi, A. (2020), "Bending analysis of functionally graded porous plates via a refined shear deformation theory", Comput. Concrete, 26(1), 63-74. https://doi.org/10.12989/cac.2020.26.1.063.
  110. Zozulya, V. (2019), "Exploration of the high order theory for functionally graded beams based on Legendre's polynomial expansion", Compos. Part B: Eng., 158 373-383. https://doi.org/10.1016/j.compositesb.2018.10.006.