Acknowledgement
The author would like to express his sincere thanks to the anonymous reviewers for their helpful comments and suggestions.
References
- Chandra, P.: Trigonometric approximation of functions in Lp-norm, J. Math. Anal. Appl. 275 (2002), 13-26. https://doi.org/10.1016/S0022-247X(02)00211-1
- Khan, H.H.: On degree of approximation of functions belonging to class Lip(α, p), Indian J. Pure Appl. Math. 5 (1974), 132-136.
- Lal, S.: Approximation of functions belonging to the generalized Lipschitz class by C1Np summability method of Fourier series, Appl. Math. Comput. 209 (2009), 346-350. https://doi.org/10.1016/j.amc.2008.12.051
- Lal, S. and Mishra, A.: Approximation of functions of class Lip(α, r),(r ≥ 1), by (N, pn)(E, 1) summability means of Fourier series, Tamkang J. Math. 45 (2014), 243-250. https://doi.org/10.5556/j.tkjm.45.2014.876
- Leindler, L.: Strong approximation and generalized Zygmund class, Acta Sci. Math. 43 (1981), no. 3-4, 301-309.
- Mittal, M.L., Rhoades, B.E., Mishra, V.N. and Singh, U.: Using infinite matrices to approximate functions of class Lip(α, p) using trigonometric polynomials, J. Math. Anal. Appl. 326 (2007), 667-676. https://doi.org/10.1016/j.jmaa.2006.03.053
- Moricz, F.: Enlarged Lipschitz and Zygmund classes of functions and Fourier transformations, East J. Approx. 16 (2010), no. 3, 259-271.
- Moricz, F. and Nemeth, J.: Generalized Zygmund classes of functions and strong approximation by Fourier series, Acta Sci. Math. 73 (2007), no. 3-4, 637-647.
- Titchmarsh, E.C.: Theory of Functions, Oxford Univ. Press, Oxford, 1939.
- Zygmund, A.: Trigonometric Series, Vol. 1, Cambridge Univ. Press, Cambridge, 1959.