References
- Abd-Alla, A.M. and Othman, M.I.A. (2016), "Reflection of plane waves from electro-magneto-thermoelastic half-space with a dual-phase-lag model", CMC, 51, 63-79.
- Abo-Dahab, S.M. and Singh, B. (2013), "Rotational and voids effect on the reflection of P waves from stress-free surface of an elastic half-space under magnetic field and initial stress without energy dissipation", Appl. Math. Model., 37, 8999-9011. https://doi.org/10.1016/j.apm.2013.04.033.
- Achenbach, J.D. (1973), "Wave propagation in elastic solids", A Volume in North-Holland Series in Applied Mathematics and Mechanics, North-Holland, Elsevier.
- Amendola, G. (2000), "On thermodynamic conditions for the stability of a thermoelectromagnetic system", Math. Meth. Appl. Sci., 23, 17-39. https://doi.org/10.1002/(SICI)1099-1476(20000110)23:1<17::AID-MMA101>3.0.CO;2-%23.
- Aouadi, M. (2007), "The generalized theory of thermo-magnetoelectroelasticity", Technische Mechanik, 27, 133-146.
- Baksi, A. and Bera, R.K. (2005), "Eigen function method for the solution of magneto-thermoelastic problems with thermal relaxation and heat source in three dimension", Math. Comput. Model., 42, 533-552. https://doi.org/10.1016/j.mcm.2005.01.032.
- Coleman, B.D. and Dill, E.H. (1971), "Thermodynamic restrictions on the constitutive equations of electromagnetic theory", Z. Angew. Math. Phys., 22, 691-702. https://doi.org/10.1007/BF01587765.
- Dai, H.L. and Rao, Y.N. (2011), "Investigation on electro-magneto-thermo-elastic interaction of functionally graded piezoelectric hollow spheres", Struct. Eng. Mech., 40(1), 49-64. http://doi.org/10.12989/sem.2011.40.1.049.
- Das, N.C., Lahiri, A., Sarkar, S. and Basu, S. (2008), "Reflection of generalized thermoelastic waves from isothermal and insulated boundaries of a half space", Comput. Math. Appl., 56, 2795-2805. https://doi.org/10.1016/j.camwa.2008.05.042.
- Das, P. and Kanoria, M. (2009), "Magneto-thermo-elastic waves in an infinite perfectly conducting elastic solid with energy dissipation", Appl. Math. Mech., 30, 221-228. https://doi.org/10.1007/s10483-009-0209-6.
- Dhaliwal, R.S. and Sherief. H.H. (1980), "Generalized thermoelasticity for anisotropic media", Quart. Appl. Math., 33, 1-8. https://doi.org/10.1090/qam/575828.
- Dorfmann, L. and Ogden, R.W. (2014), Nonlinear Theory of Electroelastic and Magnetoelastic Interactions, New York, Springer.
- Ezzat, M.A. (1997), "State space approach to generalized magneto-thermoelasticity with two relaxation times in a medium of perfect conductivity", Int. J. Eng. Sci., 35, 741-752. https://doi.org/10.1016/S0020-7225(96)00112-7.
- Hsieh, R.K.T. (1990), "Mechanical modelling of new electromagnetic materials", Proc. IUTAM Symposium, Stockholm, Sweden, April.
- Kaliski, S. (1985), "Wave equations of thermo-electro-magneto-elasticity", Proc. Vib. Prob., 6, 231-263.
- Kondaiah, P., Shankar, K. and Ganesan, N. (2013), "Pyroelectric and pyromagnetic effects on behavior of magnetoelectro-elastic plate", Coupl. Syst. Mech., 2(1), 1-22. http://doi.org/10.12989/csm.2013.2.1.001.
- Lata, P. and Kaur, I. (2019), "Thermomechanical interactions in a transversely isotropic magneto thermoelastic solids with two temperatures and rotation due to time harmonic sources", Coupl. Syst. Mech., 8(3), 219-224. http://doi.org/10.12989/csm.2019.8.3.219.
- Li, J.Y. (2003), "Uniqueness and reciprocity theorems for linear thermo-electro-magnetoelasticity", Q. J. Mech. Appl. Math., 56, 35-43. http://doi.org/10.1093/qjmam/56.1.35.
- Lord, H. and Shulman, Y. (1967), "A generalized dynamical theory of thermoelasticity", J. Mech. Phys. Solid., 15, 299-309. https://doi.org/10.1016/0022-5096(67)90024-5.
- Moreno-Navarro, P., Ibrahimbegovich, A. and Perez-Aparicio, J.L. (2018), "Linear elastic mechanical system interacting with coupled thermo-electro-magnetic fields", Coupl. Syst. Mech., 7, 5-25. http://doi.org/10.12989/csm.2018.7.1.005.
- Nayfeh, A.H. and Nemat-Nasser, A. (1971), "Thermoelastic waves in solids with thermal relaxation", Acta Mechanica, 12, 53-64. https://doi.org/10.1007/BF01178389.
- Nayfeh, A.H. and Nemat-Nasser, A. (1972), "Electro-magneto-thermoelastic plane waves in solids with thermal relaxation", J. Appl. Mech., 39, 108-113. https://doi.org/10.1115/1.3422596.
- Ogden, R.W. and Steigmann, D.J. (2011), "Mechanics and electrodynamics of magneto- and electro-elastic materials", CISM Courses and Lctures, Vol. 527, Springer-Verlag.
- Paria, G. (1962), "On Magneto-thermo-elastic plane waves", Math. Proc. Camb. Phil. Soc., 58, 527-531. https://doi.org/10.1017/S030500410003680X.
- Ponnusamy, P. and Selvamani, R. (2012), "Dispersion analysis of generalized magneto-thermoelastic waves in a transversely isotropic cylindrical panel", J. Therm. Stress., 35, 1119-1142. https://doi.org/10.1080/01495739.2012.720496.
- Roychoudhuri, S.K. and Chatterjee, G. (1990), "A coupled magneto-thermoelastic problem in a perfectly conducting elastic half-space with thermal relaxation", Int. J. Math Mech. Sci., 13, 567-578. https://doi.org/10.1155/S0161171290000801.
- Sarkar, N., De, S. and Sarkar, N. (2019), "Memory response in plane wave reflection in generalized magnetothermoelasticity", J. Electromagnet. Waves Appl., 33, 1354-1374. ps://doi.org/10.1080/09205071.2019.1608318.
- Sarkar, N. and De, S. (2020), "Waves in magneto-thermoelastic solids under modified Green-Lindsay model", J. Therm. Stress., 43, 594-611. https://doi.org/10.1080/01495739.2020.1712286.
- Sharma, J.N., Kumar, V. and Chand, D. (2003), "Reflection of generalized thermoelastic waves from the boundary of a half-space", J. Therm. Stress., 26, 925-942. https://doi.org/10.1080/01495730306342.
- Sherief, H.H. and Youssef H.M. (2004), "Short time solution for a problem in magneto-thermoelasticity with thermal relaxation", J. Therm. Stress., 27, 537-559. https://doi.org/10.1080/01495730490451468.
- Singh, B., Singh, A. and Sharma, N. (2016), "Propagation of plane waves in a generalized thermo-magneto-electro-elastic medium", Tech. Mech., 36, 199-212. https://doi.org/10.24352/UB.OVGU-2017-006.
- Singh, B. (2020), "Wave propagation in two-temperature porothermoelasticity", Int. J. Thermophys., 41, https://doi.org/10.1007/s10765-020-02670-3.
- Tiwari, R. and Mukhopadhyay, S. (2017), "On electromagneto-thermoelastic plane waves under Green-Naghdi theory of thermoelasticity-II", J. Therm. Stress., 40, 1040-1062. https://doi.org/10.1080/01495739.2017.1307094.
- Vinyas, M. and Kattimani, S.C. (2017), "Multiphysics response of magneto-electro-elastic beams in thermo-mechanical environment", Coupl. Syst. Mech., 6(3), 351-367. http://doi.org/10.12989/csm.2017.6.3.351.
- Weis, R.S. and Gaylord, T.K. (1985), "Summary of physical properties and crystal structure", Appl. Phys. A., 37, 191-203. https://doi.org/10.1007/BF00614817
- Yakhno, V.G. (2018), "An explicit formula for modeling wave propagation in magneto-electro-elastic materials", J. Electromagnet. Wave. Appl., 32, 899-912. https://doi.org/10.1080/09205071.2017.1410076
- Zhang, R. (2013), "Reflection and refraction of plane waves at the interface between magneto-electroelastic and liquid media", Theor. Appl. Mech., 40, 427-439. https://doi.org/10.2298/TAM1303427Z.
- Zhang, R., Pang, Y. and Feng, W. (2014), "Propagation of Rayleigh waves in a magneto-electro-elastic half-space with initial stress", Mech. Adv. Mater. Struct., 21, 538-543. https://doi.org/10.1080/15376494.2012.699595.