DOI QR코드

DOI QR Code

심층 신경망을 이용한 탄성파 속도 모델 구축 사례 분석

Case Analysis of Seismic Velocity Model Building using Deep Neural Networks

  • 조준현 (부경대학교 에너지자원공학과) ;
  • 하완수 (부경대학교 에너지자원공학과)
  • Jo, Jun Hyeon (Department of Energy Resources Engineering, Pukyong National University) ;
  • Ha, Wansoo (Department of Energy Resources Engineering, Pukyong National University)
  • 투고 : 2021.05.10
  • 심사 : 2021.05.27
  • 발행 : 2021.05.31

초록

속도 모델 구축은 탄성파 탐사 자료처리에서 필수적인 절차이다. 주시 토모그래피나 속도 분석과 같은 기존 기법들은 하나의 속도 모델을 예측하는 데 계산 시간이 오래 걸리며 역산 결과의 품질이 전문가의 판단에 크게 의존한다. 전파형 역산 또한 초기 속도 모델에 크게 의존한다는 문제가 있다. 최근 심층 신경망 기법이 복잡하고 비선형적인 문제를 푸는데 적용되는 사례가 많아지면서 널리 보급되고 있다. 이 논문에서는 심층 신경망 기법을 이용한 탄성파 속도 모델 구축 사례들을 각 연구에 사용한 신경망에 따라 분류하며 조사하였다. 또한 훈련용 인공 속도 모델 생성 사례도 포함하였다. 심층 신경망은 대량의 데이터로부터 신경망을 훈련함으로써 모델 매개변수를 자동으로 최적화한다. 따라서 기존 기법들에 비해 역산 결과에 사람의 판단이 개입될 여지가 적으며 훈련을 마친 후 하나의 속도 모델을 예측하는 비용은 무시할 수 있다. 또한, 심층 신경망은 전파형 역산과 달리 초기 속도 모델이 필요하지 않다. 여러 연구에서 계산 비용뿐만 아니라 역산 결과에서도 심층 신경망 기법이 뛰어난 성과를 달성하는 것을 보여주었다. 연구 결과들을 바탕으로 속도 모델 구축에 사용된 심층 신경망 기법의 특징에 대해 분석하고 논의하였다.

Velocity model building is an essential procedure in seismic data processing. Conventional techniques, such as traveltime tomography or velocity analysis take longer computational time to predict a single velocity model and the quality of the inversion results is highly dependent on human expertise. Full-waveform inversions also depend on an accurate initial model. Recently, deep neural network techniques are gaining widespread acceptance due to an increase in their integration to solving complex and nonlinear problems. This study investigated cases of seismic velocity model building using deep neural network techniques by classifying items according to the neural networks used in each study. We also included cases of generating training synthetic velocity models. Deep neural networks automatically optimize model parameters by training neural networks from large amounts of data. Thus, less human interaction is involved in the quality of the inversion results compared to that of conventional techniques and the computational cost of predicting a single velocity model after training is negligible. Additionally, unlike full-waveform inversions, the initial velocity model is not required. Several studies have demonstrated that deep neural network techniques achieve outstanding performance not only in computational cost but also in inversion results. Based on the research results, we analyzed and discussed the characteristics of deep neural network techniques for building velocity models.

키워드

과제정보

논문은 부경대학교 자율창의학술연구비(2019년)에 의하여 연구되었음.

참고문헌

  1. Adler, A., Araya-Polo, M., and Poggio, T., 2019, Deep recurrent architectures for seismic tomography, Conference Proceedings, 81st EAGE Conference and Exhibition 2019, 1-5, doi: 10.3997/2214-4609.201901512.
  2. Aminzadeh, F., Burkhard, N., Nicoletis, L., Rocca, F., and Wyatt, K., 1994, SEG/EAEG 3-D modeling project: 2nd update, Lead. edge., 13(9), 949-952, doi: 10.1190/1.1437054.
  3. Araya-Polo, M., Ferris, S., and Florez, M., 2019, Deep learning-driven velocity model building workflow, Lead. edge., 38(11), 872a1-872a9, doi: 10.1190/tle38110872a1.1.
  4. Araya-Polo, M., Jennings J., Adler A., and Dahlke T., 2018, Deep-learning tomography, Lead. edge., 37(1), 58-66, doi: 10.1190/tle37010058.1.
  5. Baysal, E., Kosloff, D., and Sherwood, W., 1983, Reverse time migration, Geophysics, 48(11), 1514-1524, doi: 10.1190/1.1441434.
  6. Biswas, R., Vassiliou, A., Stromberg, R., and Sen, M. K., 2018, Stacking velocity estimation using recurrent neural network, SEG Technical Program Expanded Abstracts, 2241-2245, doi: 10.1190/segam2018-2997208.1.
  7. Bochen, W., and Zhenwei, G., 2020, Stochastic quasi-real seismic velocity models building for the offshore oil and gas exploration, SEG 2020 Workshop: Broadband and Wide-azimuth Deepwater Seismic Technology, Beijing, China, 88-94, doi: 10.1190/bwds2020_24.1.
  8. Chen, L.-C., Papandreou, G., Kokkinos, I., Murphy, K., and Yuille, A. L., 2017, Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs, IEEE Trans. Pattern Anal. Mach. Intell., 40(4), 834-848, doi: 10.1109/TPAMI. 2017.2699184.
  9. Fabien-Ouellet, G., and Sarkar, R., 2020, Seismic velocity estimation; a deep recurrent neural-network approach, Geophysics, 85(1), U21-U29, doi: 10.1190/geo2018-0786.1.
  10. Geron, A., 2017, Hands-On Machine Learning with Scikit-Learn and Tensorflow, O'Reilly Media, 55-61.
  11. Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., and Bengio, Y., 2014, Generative adversarial nets, Adv. Neural. Inf. Process. Syst., 2672-2680.
  12. Hornik, K., Stinchcombe, M., and White, H., 1989, Multilayer feedforward networks are universal approximators, Neural Netw., 2(5), 359-366, doi: 10.1016/0893-6080(89)90020-8.
  13. Li, S., Liu, B., Ren, Y., Chen, Y., Yang, S., Wang, Y., and Jiang, Peng., 2020, Deep-learning inversion of seismic data, IEEE trans. Geosci. Remote Sensing, 58(3), 2135-2149, doi: 10.1109/TGRS.2019.2953473.
  14. Liu, B., Yang, S., Ren, Y., Xu, X., Jiang, P., and Chen, Y., 2021, Deep-learning seismic full-waveform inversion for realistic structural models, Geophysics, 86, R31-R44, doi: 10.1190/geo2019-0435.1.
  15. Liu, B., Yang, S., Xu, X., Ren, Y., and Jiang, P., 2020, Deep learning inversion of seismic data in tunnels, SEG 2019 Workshop: Mathematical Geophysics: Traditional vs Learning, Beijing, China, 5-7, doi: 10.1190/iwmg2019_13.1.
  16. Liu, Z., and Bleistein, N., 1995, Migration velocity analysis: Theory and an iterative algorithm, Geophysics, 60(1), 142-153, doi: 10.1190/1.1443741.
  17. Long, J., Shelhamer, E., and Darrell, T., 2015, Fully convolutional networks for semantic segmentation, Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit., 3431-3440.
  18. Nath, S. K., Chakroborty, S., Singh, S. K., and Ganguly, N., 1999, Velocity inversion in cross-hole seismic tomography by counterpropagation neural network, genetic algorithm and evolutionary programming techniques, Geophys. J. Int., 138(1), 108-124, doi: 10.1046/j.1365-246x.1999.00835.x.
  19. Ren, Y., Nie, L., Yang, S., Jiang, P., and Chen, Y., 2021, Building complex seismic velocity models for deep learning inversion, IEEE Access, 9, 63767-63778, doi: 10.1109/ACCESS.2021.3051159.
  20. Ronneberger, O., Fischer, P., and Brox, T., 2015, U-Net: Convolutional networks for biomedical image segmentation, International Conference on Medical Image Computing and Computer-Assisted Intervention, 234-241, doi: 10.1007/978-3-319-24574-4_28.
  21. Roth, G., and Tarantola, A., 1994, Neural networks and inversion of seismic data, J. Geophys. Res., 99(B4), 6753-6768, doi: 10.1029/93JB01563.
  22. Stoughton, D., Stefani, J., and Michell, S., 2001, 2D elastic model for wavefield investigations of subsalt objectives, deep water gulf of Mexico, SEG Technical Program Expanded Abstracts, 1269-1272, doi: 10.1190/1.1816325.
  23. Tarantola, A., 1984, Inversion of seismic reflection data in the acoustic approximation, Geophysics, 49, 1259-1266, doi: 10.1190/1.1441754.
  24. Versteeg, R., 1994, The Marmousi experience: Velocity model determination on a synthetic complex data set, Lead. edge., 13(9), 927-936, doi: 10.1190/1.1437051.
  25. Virieux, J., and Operto, S., 2009, An overview of full-waveform inversion in exploration geophysics, Geophysics, 74(6), WCC1-WCC26, doi: 10.1190/1.3238367.
  26. Wang, W., and Ma, J., 2019, VMB-net: A deep learning network for velocty model building in a cross-well acquisition geometry, SEG Technical Program Expanded Abstracts, 2569-2573, doi: 10.1190/segam2019-3216078.1.
  27. Wang, W., and Ma, J., 2020, Velocity model building in a crosswell acquisition geometry with image-trained artificial neural networks, Geophysics, 85(2), U31-U46, doi: 10.1190/geo2018-0591.1.
  28. Wang, W., Yang, F., and Ma, J., 2018, Velocity model building with a modified fully convolutional network, SEG Technical Program Expanded Abstracts, 2086-2090, doi: 10.1190/segam2018-2997566.1.
  29. Wu, X., Geng, Z., Shi, Y., Pham, N., Fomel, S., and Caumon, G., 2020, Building realistic structure models to train convolutional neural networks for seismic structural interpretation, Geophysics, 85(4), WA27-WA39, doi: 10.1190/geo2019-0375.1.
  30. Wu, X., Liang, L., Shi, Y., and Fomel, S., 2019, FaultSeg3D: Using synthetic datasets to train an end-to-end convolutional neural network for 3D seismic fault segmentation, Geophysics, 84(3), IM35-IM45, doi: 10.1190/geo2018-0646.1.
  31. Wu, Y., and Lin, Y., 2019, InversionNet: A real-time and accurate full waveform inversion with CNNs and continuous CRFs, IEEE Trans. Comput. Imaging, 6, 419-433, doi: 10.1109/TCI.2019.2956866.
  32. Wu, Y., Lin, Y., and Zhou, Z., 2018, Inversionet: Accurate and efficient seismic-waveform inversion with convolutional neural networks, SEG Technical Program Expanded Abstracts, 2096-2100, doi: 10.1190/segam2018-2998603.1.
  33. Yang, F., and Ma, J., 2019, Deep-learning inversion: A next-generation seismic velocity model building method, Geophysics, 84(4), R583-R599, doi: 10.1190/geo2018-0249.1.
  34. Yilmaz, O., 2001, Seismic data analysis: processing, inversion and interpretation of seismic data, Vol. I, Soc. Expl. Geophys., 288-323.
  35. Zhang, J., Brink, U. S., and Toksoz, M. N., 1998, Nonlinear refraction and reflection travel time tomography, J. Geophys. Res. Solid Earth, 103(B12), 29743-29757, doi: 10.1029/98JB01981.
  36. Zhang, Z., and Lin, Y., 2020, Data-driven seismic waveform inversion: A study on the robustness and generalization, IEEE Trans. Geosci. Remote Sens., 58(10), 6900-6913, doi: 10.1109/TGRS.2020.2977635.