DOI QR코드

DOI QR Code

Transcriptome Analysis Unveils Gln3 Role in Amino Acids Assimilation and Fluconazole Resistance in Candida glabrata

  • Santos, Francisco J. Perez-de los (Unidad de Genomica Avanzada, Laboratorio Nacional de Genomica para la Biodiversidad (Langebio)) ;
  • Garcia-Ortega, Luis Fernando (Unidad de Genomica Avanzada, Laboratorio Nacional de Genomica para la Biodiversidad (Langebio)) ;
  • Robledo-Marquez, Karina (Division de Biologia Molecular, Instituto Potosino de Investigacion Científica y Tecnologica A. C. (IPICYT)) ;
  • Guzman-Moreno, Jesus (Division de Biologia Molecular, Instituto Potosino de Investigacion Científica y Tecnologica A. C. (IPICYT)) ;
  • Riego-Ruiz, Lina (Division de Biologia Molecular, Instituto Potosino de Investigacion Científica y Tecnologica A. C. (IPICYT))
  • Received : 2020.12.17
  • Accepted : 2021.04.19
  • Published : 2021.05.28

Abstract

After Candida albicans, Candida glabrata is one of the most common fungal species associated with candidemia in nosocomial infections. Rapid acquisition of nutrients from the host is important for the survival of pathogens which possess the metabolic flexibility to assimilate different carbon and nitrogen compounds. In Saccharomyces cerevisiae, nitrogen assimilation is controlled through a mechanism known as Nitrogen Catabolite Repression (NCR). NCR is coordinated by the action of four GATA factors; two positive regulators, Gat1 and Gln3, and two negative regulators, Gzf3 and Dal80. A mechanism in C. glabrata similar to NCR in S. cerevisiae has not been broadly studied. We previously showed that in C. glabrata, Gln3, and not Gat1, has a major role in nitrogen assimilation as opposed to what has been observed in S. cerevisiae in which both factors regulate NCR-sensitive genes. Here, we expand the knowledge about the role of Gln3 from C. glabrata through the transcriptional analysis of BG14 and gln3Δ strains. Approximately, 53.5% of the detected genes were differentially expressed (DEG). From these DEG, amino acid metabolism and ABC transporters were two of the most enriched KEGG categories in our analysis (Up-DEG and Down-DEG, respectively). Furthermore, a positive role of Gln3 in AAA assimilation was described, as was its role in the transcriptional regulation of ARO8. Finally, an unexpected negative role of Gln3 in the gene regulation of ABC transporters CDR1 and CDR2 and its associated transcriptional regulator PDR1 was found. This observation was confirmed by a decreased susceptibility of the gln3Δ strain to fluconazole.

Keywords

Acknowledgement

The authors are grateful to Dr. Alejandro De Las Penas for kindly providing the pdr1𝚫 mutant, to Dr. Jorge C. Navarro-Munoz for preliminary data analysis and to Dr. Nicolas Gomez-Hernandez (IPICYT) for his skillful technical assistance. This study was funded by the Consejo Nacional de Ciencia y Tecnologia (CONACYT) grant CB-2009-132377 to LRR. LFGO and JGM received postdoctoral fellowships from CONACYT. KARM and FJPS received postdoctoral fellowships from IPICYT. The authors also gratefully acknowledge the computing time granted by the IPICYT Supercomputing National Center for Education & Research (CNS-IPICYT), grant TKIIR2020-LFGO.

References

  1. Blackwell M. 2011. The Fungi: 1, 2, 3 5.1 million species? Am. J. Bot. 98: 426-438. https://doi.org/10.3732/ajb.1000298
  2. Bongomin F, Gago S, Oladele R, Denning D. 2017. Global and multi-national prevalence of fungal diseases-Estimate precision. J. Fungi (Basel). 3: 57. https://doi.org/10.3390/jof3040057
  3. Guinea J. 2014. Global trends in the distribution of Candida species causing candidemia. Clin. Microbiol. Infect. 20 (Suppl 6): 5-10. https://doi.org/10.1111/1469-0691.12539
  4. Fidel PL, Vazquez JA, Sobel JD. 1999. Candida glabrata: Review of epidemiology, pathogenesis, and clinical disease with comparison to C. albicans. Clin. Microbiol. Rev. 12: 80-96. https://doi.org/10.1128/CMR.12.1.80
  5. Pfaller MA, Diekema DJ, Gibbs DL, Newell VA, Ellis D, Tullio A, et al. 2010. Results from the ARTEMIS DISK Global Antifungal Surveillance Study, 1997 to 2007: a 10.5-year analysis of susceptibilities of Candida Species to fluconazole and voriconazole as determined by CLSI standardized disk diffusion. J. Clin. Microbiol. 48: 1366-1377. https://doi.org/10.1128/JCM.02117-09
  6. Borst A, Raimer MT, Warnock DW, Morrison CJ, Arthington-Skaggs BA. 2005. Rapid acquisition of stable azole resistance by Candida glabrata isolates obtained before the clinical introduction of fluconazole. Antimicrob. Agents Chemother. 49: 783-787. https://doi.org/10.1128/AAC.49.2.783-787.2005
  7. Kolaczkowska A, Kolaczkowski M. 2016. Drug resistance mechanisms and their regulation in non-albicans Candida species. J. Antimicrob. Chemother. 71: 1438-1450. https://doi.org/10.1093/jac/dkv445
  8. Pfaller MA. 2012. Antifungal drug resistance: mechanisms, epidemiology, and consequences for treatment. Am. J. Med. 125(1 Suppl): S3-13. https://doi.org/10.1016/j.amjmed.2011.11.001
  9. Parkinson T, Falconer DJ, Hitchcock CA. 1995. Fluconazole resistance due to energy-dependent drug efflux in Candida glabrata. Antimicrob. Agents Chemother. 39: 1696-1699. https://doi.org/10.1128/AAC.39.8.1696
  10. Sanglard D, Ischer F, Bille J. 2001. Role of ATP-binding-cassette transporter genes in high-frequency acquisition of resistance to azole antifungals in Candida glabrata. Antimicrob. Agents Chemother. 45: 1174-1183. https://doi.org/10.1128/AAC.45.4.1174-1183.2001
  11. Miyazaki H, Miyazaki Y, Geber A, Parkinson T, Hitchcock C, et al. 1998. Fluconazole resistance associated with drug efflux and increased transcription of a drug transporter gene, PDH1, in Candida glabrata. Antimicrob. Agents Chemother. 42: 1695-1701. https://doi.org/10.1128/AAC.42.7.1695
  12. Tsai H-F, Krol AA, Sarti KE, Bennett JE. 2006. Candida glabrata PDR1, a Transcriptional Regulator of a Pleiotropic Drug Resistance Network, mediates azole resistance in clinical isolates and petite mutants. Antimicrob. Agents Chemother. 50: 1384-1392. https://doi.org/10.1128/AAC.50.4.1384-1392.2006
  13. Vermitsky J-P, Earhart KD, Smith WL, Homayouni R, Edlind TD, Rogers PD. 2006. Pdr1 regulates multidrug resistance in Candida glabrata: gene disruption and genome-wide expression studies. Mol. Microbiol. 61: 704-722. https://doi.org/10.1111/j.1365-2958.2006.05235.x
  14. Cooper TG. 2002. Transmitting the signal of excess nitrogen in Saccharomycescerevisiae from the Tor proteins to the GATA factors: connecting the dots. FEMS Microbiol. Rev. 26: 223-238. https://doi.org/10.1111/j.1574-6976.2002.tb00612.x
  15. Magasanik B, Kaiser CA. 2002. Nitrogen regulation in Saccharomycescerevisiae. Gene 290: 1-18. https://doi.org/10.1016/S0378-1119(02)00558-9
  16. Marzluf GA. 1997. Genetic regulation of nitrogen metabolism in the fungi. Microbiol. Mol. Biol. Rev. 61: 17-32. https://doi.org/10.1128/.61.1.17-32.1997
  17. Perez-Delos Santos FJ, Riego-Ruiz L. 2016. Gln3 is a main regulator of nitrogen assimilation in Candida glabrata. Microbiology 162: 1490-1499. https://doi.org/10.1099/mic.0.000312
  18. Orta-Zavalza E, Guerrero-Serrano G, Gutierrez-Escobedo G, Canas-Villamar I, Juarez-Cepeda J, Castano I, et al. 2013. Local silencing controls the oxidative stress response and the multidrug resistance in Candida glabrata. Mol. Microbiol. 88: 1135-1148. https://doi.org/10.1111/mmi.12247
  19. Schmitt ME, Brown TA, Trumpower BL. 1990. A rapid and simple method for preparation of RNA from Saccharomyces cerevisiae. Nucleic Acids Res. 18: 3091-3092. https://doi.org/10.1093/nar/18.10.3091
  20. Martin M. 2011. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 17: 10-12. https://doi.org/10.14806/ej.17.1.200
  21. Bolger AM, Lohse M, Usadel B. 2014. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30: 2114-2120. https://doi.org/10.1093/bioinformatics/btu170
  22. Haas BJ, Papanicolaou A, Yassour M, Grabherr M, Blood PD, Bowden J, et al. 2013. De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. Nat. Protoc. 8: 1494-1512. https://doi.org/10.1038/nprot.2013.084
  23. Langmead B, Salzberg SL. 2012. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9: 357-359. https://doi.org/10.1038/nmeth.1923
  24. Li B, Dewey CN. 2011. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics 12: 323. https://doi.org/10.1186/1471-2105-12-323
  25. Apweiler R. 2004. UniProt: the universal protein knowledgebase. Nucleic Acids Res. 32: D115-D119. https://doi.org/10.1093/nar/gkh131
  26. Skrzypek MS, Binkley J, Binkley G, Miyasato SR, Simison M, Sherlock G. 2017. The Candida Genome Database (CGD): incorporation of Assembly 22, systematic identifiers and visualization of high throughput sequencing data. Nucleic Acids Res. 45: D592-D596. https://doi.org/10.1093/nar/gkw924
  27. Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, et al. 1997. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25: 3389-3402. https://doi.org/10.1093/nar/25.17.3389
  28. Yu G, Wang LG, Han Y, He QY. 2012. clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS 16: 284-287. https://doi.org/10.1089/omi.2011.0118
  29. Garcia-Ortega LF, Martinez O. 2015. How many genes are expressed in a transcriptome? Estimation and results for RNA-Seq. PLoS One 10: e0130262. https://doi.org/10.1371/journal.pone.0130262
  30. The R Project for Statistical Computing. Available from http://www.R-project.org/. Accessed Nov. 29, 2020.
  31. Robinson MD, McCarthy DJ, Smyth GK. 2010. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26: 139-140. https://doi.org/10.1093/bioinformatics/btp616
  32. StoreyLab. StoreyLab/qvalue. Available from https://github.com/StoreyLab/qvalue. Accessed Nov. 29, 2020.
  33. Chen X, Zhang B, Wang T, Bonni A, Zhao G. 2020. Robust principal component analysis for accurate outlier sample detection in RNA-Seq data. BMC Bioinformatics 21: 269. https://doi.org/10.1186/s12859-020-03608-0
  34. Chen Y, McCarthy D, Ritchie M, Robinson M, Smyth G. 2020. edgeR: differential analysis of sequence read count data. User's Guide. Available from https://bioconductor.org/packages/release/bioc/vignettes/edgeR/inst/doc/edgeRUsersGuide.pdf. Accessed Mar. 28, 2021.
  35. Brunke S, Seider K, Richter ME, Bremer-Streck S, Ramachandra S, et al. 2014. Histidine degradation via an aminotransferase increases the nutritional flexibility of Candida glabrata. Eukaryot. Cell 13: 758-765. https://doi.org/10.1128/EC.00072-14
  36. Brunke S, Seider K, Almeida RS, Heyken A, Fleck CB, Brock M, et al. 2010. Candida glabrata tryptophan-based pigment production via the Ehrlich pathway. Mol. Microbiol. 76: 25-47. https://doi.org/10.1111/j.1365-2958.2010.07052.x
  37. Godard P, Urrestarazu A, Vissers S, Kontos K, Bontempi G, van Helden J, et al. 2007. Effect of 21 different nitrogen sources on global gene expression in the yeast Saccharomyces cerevisiae. Mol. Cell. Biol. 27: 3065-3086. https://doi.org/10.1128/MCB.01084-06
  38. Scherens B, Feller A, Vierendeels F, Messenguy F, Dubois E. 2006. Identification of direct and indirect targets of the Gln3 and Gat1 activators by transcriptional profiling in response to nitrogen availability in the short and long term. FEMS Yeast Res. 6: 777-791. https://doi.org/10.1111/j.1567-1364.2006.00060.x
  39. Liao W-L, Ramon AM, Fonzi WA. 2008. GLN3 encodes a global regulator of nitrogen metabolism and virulence of C. albicans. Fungal Genet. Biol. 45: 514-526. https://doi.org/10.1016/j.fgb.2007.08.006
  40. Stanbrough M, Rowen DW, Magasanik B. 1995. Role of the GATA factors Gln3p and Nil1p of Saccharomyces cerevisiae in the expression of nitrogen-regulated genes. Proc. Natl. Acad. Sci. USA 92: 9450-9454. https://doi.org/10.1073/pnas.92.21.9450
  41. Hazelwood LA, Daran J-M, van Maris AJA, Pronk JT, Richard Dickinson J. 2008. The Ehrlich pathway for fusel alcohol production: A century of research on Saccharomycescerevisiae metabolism. Appl. Environ. Microbiol. 74: 2259-2266. https://doi.org/10.1128/AEM.02625-07

Cited by

  1. Analysis of Volatile Molecules Present in the Secretome of the Fungal Pathogen Candida glabrata vol.26, pp.13, 2021, https://doi.org/10.3390/molecules26133881