과제정보
The financial support provided by the University of Malaya under the grant GPF034A-2018 is gratefully acknowledged.
참고문헌
- Abd. Aziz, F.N.A., Bida, S.M., Nasir, N.A.M. and Jaafar, M.S. (2014), "Mechanical properties of lightweight mortar modified with oil palm fruit fibre and tire crumb", Constr. Build. Mater., 73, 544-550. https://doi.org/10.1016/j.conbuildmat.2014.09.100
- ACI 213, C. (2010), Guide for Structural Lightweight-Aggregate Concrete Reported by ACI Committee, 2131-2338.
- Alfayez, S.A., Omar, T. and Nehdi, M.L. (2019), "Eco-efficient preplaced recycled aggregate concrete incorporating recycled tyre waste", Proc. Inst. Civil Eng.: Eng. Sustain., 173(2), 84-96. https://doi.org/10.1680/jensu.18.00027.
- Alsaleh, A. and Sattler, M.L. (2014), "Waste tire pyrolysis: influential parameters and product properties", Curr. Sustain./Renew. Energy Report., 1(4), 129-135. https://doi.org/10.1007/s40518-014-0019-0.
- Angelin, A.F, Miranda, E.J.P., Santos, J.M.C.D., Lintz, R.C.C. and Gachet-Barbosa, L.A. (2019), "Rubberized mortar: The influence of aggregate granulometry in mechanical resistances and acoustic behavior", Constr. Build. Mater., 200, 248-254. https://doi.org/10.1016/j.conbuildmat.2018.12.123.
- Angelin, Andressa F. andrade, M.F.F., Bonatti, R., Cecche Lintz, R.C., Gachet-Barbosa, L.A. and Osorio, W.R. (2015), "Effects of spheroid and fiber-like waste-tire rubbers on interrelation of strength-to-porosity in rubberized cement and mortars", Constr. Build. Mater., 95, 525-536. https://doi.org/10.1016/j.conbuildmat.2015.07.166.
- Angelin, Andressa F., Lintz, R.C.C., Gachet-Barbosa, L.A. and Osorio, W.R. (2017), "The effects of porosity on mechanical behavior and water absorption of an environmentally friendly cement mortar with recycled rubber", Constr. Build. Mater., 151, 534-545. https://doi.org/10.1016/j.conbuildmat.2017.06.061.
- ASTM C109/C109M-16a (2016), Standard Test Method for Compressive Strength of Hydraulic Cement Mortars (using 2-in. or [50-mm] cube specimens), ASTM Book of Standards.
- ASTM C1437-15 (2015), Standard Test Method for Flow of Hydraulic Cement Mortar, ASTM Book of Standards.
- ASTM C150/C150M (2012), Standard Specification for Portland Cement, Annual Book of ASTM Standards.
- ASTM C270-19ae1 (2019), Standard Specification for Mortar for Unit Masonry, United States: American Society for Testing and Material, 2-13.
- ASTM C305-14 (2015), Standard Practice for Mechanical Mixing of Hydraulic Cement Pastes and Mortars, ASTM Standard Book 14-16.
- ASTM C331/C331M-17 (2017), Standard Specification for Lightweight Aggregates for Concrete Masonry Units, ASTM Standard Book, 04, 1-4.
- ASTM C596-18 (2018), Standard Test Method for Drying Shrinkage of Mortar Containing Hydraulic Cement, ASTM Book of Standards.
- Boukour, S. and Benmalek, M.L. (2016), "Performance evaluation of a resinous cement mortar modified with crushed clay brick and tire rubber aggregate", Constr. Build. Mater., 120, 473-481. https://doi.org/10.1016/j.conbuildmat.2016.05.119
- Cheng, Y., Liu, S., Zhu, B., Liu, R. and Wang, Y. (2019), "Preparation of preplaced aggregate concrete and experimental study on its strength", Constr. Build. Mater., 229. https://doi.org/10.1016/j.conbuildmat.2019.116847
- Corredor-Bedoya, A.C., Zoppi, R.A. and Serpa, A.L. (2017), "Composites of scrap tire rubber particles and adhesive mortar - Noise insulation potential", Cement Concrete Compos., 82, 45-66. https://doi.org/10.1016/j.cemconcomp.2017.05.007
- Dong, W., Li, W., Vessalas, K. and Wang, K. (2020), "Mechanical and conductive properties of smart cementitious composites with conductive rubber crumbs", ES Mater. Manuf., 7, 51-63. https://doi.org/10.30919/esmm5f711
- Du, Q., Sun, Q., Lv, J. and Yang, J. (2017), "Use of preplaced casting method in lightweight aggregate concrete", Adv. Mater. Sci. Eng., 2017, 1-7. https://doi.org/10.1155/2017/7234761
- EN 197-1 (2011), Cement - Part 1- Compositions, Specifications and Conformity Criteria for Common Cements, European Committee for Standardization.
- Fadiel, A., Al Rifaie, F., Abu-lebdeh, T. and Fini, E. (2014), "Use of crumb rubber to improve thermal efficiency of cement-based materials", Am. J. Eng. Appl. Sci., 7(1), 1-11. https://doi.org/10.3844/ajeassp.2014.1.11.
- Fiore, A., Marano, G.C., Marti, C. and Molfetta, M. (2014), "On the fresh/hardened properties of cement composites incorporating rubber particles from recycled tires", Adv. Civil Eng., 2014, Article ID 876158. https://doi.org/10.1155/2014/876158.
- Gesoglu, M., O zturan, T. and Guneyisi, E. (2004), "Shrinkage cracking of lightweight concrete made with cold-bonded fly ash aggregates", Cement Concrete Res., 34(7), 1121-1130. https://doi.org/10.1016/j.cemconres.2003.11.024.
- Gesoglu, M., O zturan, T. and Guneyisi, E. (2006), "Effects of cold-bonded fly ash aggregate properties on the shrinkage cracking of lightweight concretes", Cement Concrete Compos., 28(7), 598-605. https://doi.org/10.1016/j.cemconcomp.2006.04.002.
- ISO 10534-2 (1998), Acoustics-Determination of Sound Absorption Coefficient and Impedance in Impedance TubesPart 2: Transfer-Function Method.
- Li, P.P., Yu, Q.L., Brouwers, H.J.H. and Chen, W. (2019), "Conceptual design and performance evaluation of two-stage ultra-low binder ultra-high performance concrete", Cement Concrete Res., 125, 105858. https://doi.org/10.1016/j.cemconres.2019.105858.
- Li, X., Ling, T.C. and Hung Mo, K. (2020), "Functions and impacts of plastic/rubber wastes as eco-friendly aggregate in concrete-A review", Constr. Build. Mater., 240, 117869. https://doi.org/10.1016/j.conbuildmat.2019.117869.
- Ling, T.C., Nor, H.M. and Lim, S.K. (2010), "Using recycled waste tyres in concrete paving blocks", Proc. Inst. Civil Eng.: Waste Resour. Manage., 163(1), 37-45. https://doi.org/10.1680/warm.2010.163.1.37.
- Liu, J., Shi, C., Farzadnia, N. and Ma, X. (2019), "Effects of pretreated fine lightweight aggregate on shrinkage and pore structure of ultra-high strength concrete", Constr. Build. Mater., 204, 276-287. https://doi.org/10.1016/j.conbuildmat.2019.01.205.
- Lopez-Zaldivar, O., Lozano-Diez, R., Herrero del Cura, S., Mayor-Lobo, P. and Hernandez-Olivares, F. (2017), "Effects of water absorption on the microstructure of plaster with end-oflife tire rubber mortars", Constr. Build. Mater., 150, 558-567. https://doi.org/10.1016/j.conbuildmat.2017.06.014.
- Medina, N.F., Flores-Medina, D. and Hernandez-Olivares, F. (2016), "Influence of fibers partially coated with rubber from tire recycling as aggregate on the acoustical properties of rubberized concrete", Constr. Build. Mater., 129, 25-36. https://doi.org/10.1016/j.conbuildmat.2016.11.007.
- Meshgin, P., Xi, Y. and Li, Y. (2012), "Utilization of phase change materials and rubber particles to improve thermal and mechanical properties of mortar", Constr. Build. Mater., 28(1), 713-721. https://doi.org/10.1016/j.conbuildmat.2011.10.039.
- Mohajerani, A., Burnett, L., Smith, J.V., Markovski, S., Rodwell, G., Rahman, M.T., Kurmus, H., Mirzababaei, M., Arulrajah, A., Horpibulsuk, S. and Maghool, F. (2020), "Recycling waste rubber tyres in construction materials and associated environmental considerations: A review", Resour. Conserv. Recyc., 155. https://doi.org/10.1016/j.resconrec.2020.104679.
- Mohammed, B.S., Adamu, M. and Shafiq, N. (2017), "A review on the effect of crumb rubber on the properties of rubbercrete", Int. J. Civil Eng. Technol., 8(9), 599-615.
- Mohammed, B.S., Anwar Hossain, K.M., Eng Swee, J.T., Wong, G. and Abdullahi, M. (2012), "Properties of crumb rubber hollow concrete block", J. Clean. Prod., 23(1), 57-67. https://doi.org/10.1016/j.jclepro.2011.10.035.
- Moreno, D.D.P., Ribeiro, S. and Saron, C. (2020), "Compatibilization of recycled rubber aggregate in mortar", Mater. Struct./Materiaux et Constr., 53(2), 1-12. https://doi.org/10.1617/s11527-020-1456-4.
- Mundo, R. Di, Seara-Paz, S., Gonzalez-Fonteboa, B. and Notarnicola, M. (2020), "Masonry and render mortars with tyre rubber as aggregate: Fresh state rheology and hardened state performances", Constr. Build. Mater., 245, 118359. https://doi.org/10.1016/j.conbuildmat.2020.118359.
- Murali, G., Poka, L., Parthiban, K., Haridharan, M.K. and Siva, A. (2019), "Impact response of novel fibre-reinforced grouted aggregate rubberized concrete", Arab. J. Sci. Eng., 44(10), 8451-8463. https://doi.org/10.1007/s13369-019-03819-5.
- Najjar, M.F., Soliman, A.M. and Nehdi, M.L. (2014), "Critical overview of two-stage concrete: Properties and applications", Constr. Build. Mater., 62, 47-58. https://doi.org/10.1016/j.conbuildmat.2014.03.021.
- Onuaguluchi, O. and Banthia, N. (2019), "Long-term sulfate resistance of cementitious composites containing fine crumb rubber", Cement Concrete Compos., 104, 103354. https://doi.org/10.1016/j.cemconcomp.2019.103354.
- Ozturk, M., Depci, T., Karaaslan, M., Sevim, U.K., Akgol, O. and Ozdemir Hacioglu, S. (2020), "Synergetic effect of waste tire rubber and mil scale on electromagnetic wave attenuation properties of new generation mortar", J. Build. Eng., 30, 101249. https://doi.org/10.1016/j.jobe.2020.101249.
- Padhi, S. and Panda, K.C. (2016), "Fresh and hardened properties of rubberized concrete using fine rubber and silpozz", Adv. Concrete Constr., 4(1), 49-69. https://doi.org/10.12989/acc.2016.4.1.049.
- Radwan, M.K.H., Onn, C.C., Mo, K.H., Yap, S.P., Ng, C.G. and Yusoff, S. (2020), "Eco-mechanical performance of binary and ternary cement blends containing fly ash and slag", Proceedings of the Institution of Civil Engineers-Engineering Sustainability, 1-14. https://doi.org/10.1680/jensu.20.00009.
- Rashad, A.M. (2016), "A comprehensive overview about recycling rubber as fine aggregate replacement in traditional cementitious materials", Int. J. Sustain. Built Envir., 5(1), 46-82. https://doi.org/10.1016/j.ijsbe.2015.11.003.
- Ren, R., Liang, J.F., Liu, D., Gao, J. and Chen, L. (2020), "Mechanical behavior of crumb rubber concrete under axial compression", Adv. Concrete Constr., 9(3), 249-256. https://doi.org/10.12989/acc.2020.9.3.249.
- Roychand, R., Gravina, R.J., Zhuge, Y., Ma, X., Youssf, O. and Mills, J.E. (2020), "A comprehensive review on the mechanical properties of waste tire rubber concrete", Constr. Build. Mater., 237, 117651. https://doi.org/10.1016/j.conbuildmat.2019.117651.
- Sathiskumar, C. and Karthikeyan, S. (2019), "Recycling of waste tires and its energy storage application of by-products -a review", Sustain. Mater. Technol., 22, e00125. https://doi.org/10.1016/j.susmat.2019.e00125.
- Seddeq, H.S. (2009), "Factors influencing acoustic performance of sound absorptive materials", Austr. J. Basic Appl. Sci., 3(4), 4610-4617.
- Si, R., Guo, S. and Dai, Q. (2017), "Durability performance of rubberized mortar and concrete with NaOH-Solution treated rubber particles", Constr. Build. Mater., 153, 496-505. https://doi.org/10.1016/j.conbuildmat.2017.07.085.
- Sofi, A. (2018), "Effect of waste tyre rubber on mechanical and durability properties of concrete-A review A", Ain Shams Eng. J., 9, 2691-2700. https://doi.org/10.1016/j.asej.2017.08.007.
- Solanki, P. and Dash, B. (2016), "Mechanical properties of concrete containing recycled materials", Adv. Concrete Constr., 4(3), 207-220. https://doi.org/10.12989/acc.2016.4.3.207.
- Sukontasukkul, P. (2009), "Use of crumb rubber to improve thermal and sound properties of pre-cast concrete panel", Constr. Build. Mater., 23(2), 1084-1092. https://doi.org/10.1016/j.conbuildmat.2008.05.021.
- Thomas, B.S. and Gupta, R.C. (2016), "A comprehensive review on the applications of waste tire rubber in cement concrete", Renew. Sustain. Energy Rev., 54, 1323-1333. https://doi.org/10.1016/j.rser.2015.10.092.
- Tie, T.S., Mo, K.H., Putra, A., Loo, S.C., Alengaram, U.J. and Ling, T.C. (2020), "Sound absorption performance of modified concrete: A review", J. Build. Eng., 30, 101219. https://doi.org/10.1016/j.jobe.2020.101219.
- Uygunoglu, T. and Topcu, I.B. (2010), "The role of scrap rubber particles on the drying shrinkage and mechanical properties of self-consolidating mortars", Constr. Build. Mater., 24(7), 1141-1150. https://doi.org/10.1016/j.conbuildmat.2009.12.027.
- Williams, K.C. and Partheeban, P. (2018), "An experimental and numerical approach in strength prediction of reclaimed rubber concrete", Adv. Concrete Constr., 6(1), 87-102. https://doi.org/10.12989/acc.2018.6.1.087.
- Xue, G. and Cao, M.L. (2017), "Effect of modified rubber particles mixing amount on properties of cement mortar", Adv. Civil Eng., 2017, Article ID 8643839. https://doi.org/10.1155/2017/8643839.
- Yoon, J.Y. and Kim, J.H. (2019), "Mechanical properties of preplaced lightweight aggregates concrete", Constr. Build. Mater., 216, 440-449. https://doi.org/10.1016/j.conbuildmat.2019.05.010.
- Yu, Y. and Zhu, H. (2016), "Influence of rubber size on properties of crumb rubber mortars", Mater., 9(7), 1-12. https://doi.org/10.3390/ma9070527.
- Zhong, H., Poon, E.W., Chen, K. and Zhang, M. (2019), "Engineering properties of crumb rubber alkali-activated mortar reinforced with recycled steel fibres", J. Clean. Prod., 238, 117950. https://doi.org/10.1016/j.jclepro.2019.117950.
- Zhu, H., Rong, B., Xie, R. and Yang, Z. (2018), "Experimental investigation on the floating of rubber particles of crumb rubber concrete", Constr. Build. Mater., 164, 644-654. https://doi.org/10.1016/j.conbuildmat.2018.01.001.