DOI QR코드

DOI QR Code

Pharmacological potential of ginseng and its major component ginsenosides

  • Ratan, Zubair Ahmed (Department of Biomedical Engineering, Khulna University of Engineering and Technology) ;
  • Haidere, Mohammad Faisal (Department of Public Health and Informatics, Bangabandhu Sheikh Mujib Medical University) ;
  • Hong, Yo Han (Department of Integrative Biotechnology, Sungkyunkwan University) ;
  • Park, Sang Hee (Department of Biocosmetics, Sungkyunkwan University) ;
  • Lee, Jeong-Oog (Department of Aerospace Information Engineering, Bio-Inspired Aerospace Information Laboratory, Konkuk University) ;
  • Lee, Jongsung (Department of Integrative Biotechnology, Sungkyunkwan University) ;
  • Cho, Jae Youl (Department of Integrative Biotechnology, Sungkyunkwan University)
  • 투고 : 2019.12.31
  • 심사 : 2020.02.25
  • 발행 : 2021.03.01

초록

Ginseng has been used as a traditional herb in Asian countries for thousands of years. It contains a large number of active ingredients including steroidal saponins, protopanaxadiols, and protopanaxatriols, collectively known as ginsenosides. In the last few decades, the antioxidative and anticancer effects of ginseng, in addition to its effects on improving immunity, energy and sexuality, and combating cardiovascular diseases, diabetes mellitus, and neurological diseases, have been studied in both basic and clinical research. Ginseng could be a valuable resource for future drug development; however, further higher quality evidence is required. Moreover, ginseng may have drug interactions although the available evidence suggests it is a relatively safe product. This article reviews the bioactive compounds, global distribution, and therapeutic potential of plants in the genus Panax.

키워드

과제정보

This work was supported by the BK21 plus program and the Basic Science Research Program (2017R1A6A1A03015642) of the National Research Foundation of Korea (NRF), funded by the Ministry of Education, and by a grant in 2018 to J.Y.C. from the Korean Society of Ginseng, Republic of Korea.

참고문헌

  1. Yu T, Yang Y, Kwak Y-S, Song GG, Kim M-Y, Rhee MH, Cho JY. Ginsenoside Rc from Panax ginseng exerts anti-inflammatory activity by targeting TANK-binding kinase 1/interferon regulatory factor-3 and p38/ATF-2. J Ginseng Res 2017;41:127-33. https://doi.org/10.1016/j.jgr.2016.02.001
  2. Im D-s, Nah S-y. Yin and Yang of ginseng pharmacology: ginsenosides vs gintonin. Acta Pharmacol Sin 2013;34:1367. https://doi.org/10.1038/aps.2013.100
  3. Lee BH, Choi SH, Kim HJ, Park SD, Rhim H, Kim HC, Hwang SH, Nah SY. Gintonin absorption in intestinal model systems. J Ginseng Res 2018;42:35-41. https://doi.org/10.1016/j.jgr.2016.12.007
  4. Cho HJ, Choi SH, Kim HJ, Lee BH, Rhim H, Kim HC, Hwang SH, Nah SY. Bioactive lipids in gintonin-enriched fraction from ginseng. J Ginseng Res 2019;43:209-17. https://doi.org/10.1016/j.jgr.2017.11.006
  5. Kim J-H. Pharmacological and medical applications of Panax ginseng and ginsenosides: a review for use in cardiovascular diseases. J Ginseng Res 2018;42:264-9. https://doi.org/10.1016/j.jgr.2017.10.004
  6. Kim KH, Lee D, Lee HL, Kim CE, Jung K, Kang KS. Beneficial effects of Panax ginseng for the treatment and prevention of neurodegenerative diseases: past findings and future directions. J Ginseng Res 2018;42:239-47. https://doi.org/10.1016/j.jgr.2017.03.011
  7. Kim HJ, Jung SW, Kim SY, Cho IH, Kim HC, Rhim H, Kim M, Nah SY. Panax ginseng as an adjuvant treatment for Alzheimer's disease. J Ginseng Res 2018;42:401-11. https://doi.org/10.1016/j.jgr.2017.12.008
  8. Kim JH, Yi YS, Kim MY, Cho JY. Role of ginsenosides, the main active components of Panax ginseng, in inflammatory responses and diseases. J Ginseng Res 2017;41:435-43. https://doi.org/10.1016/j.jgr.2016.08.004
  9. Mohanan P, Subramaniyam S, Mathiyalagan R, Yang D-C. Molecular signaling of ginsenosides Rb1, Rg1, and Rg3 and their mode of actions. J Ginseng Res 2018;42:123-32. https://doi.org/10.1016/j.jgr.2017.01.008
  10. Han SY, Kim J, Kim E, Kim SH, Seo DB, Kim JH, Shin SS, Cho JY. AKT-targeted anti-inflammatory activity of Panax ginseng calyx ethanolic extract. J Ginseng Res 2018;42:496-503. https://doi.org/10.1016/j.jgr.2017.06.003
  11. Wahid F, Khan T, Subhan F, Khan M, Kim Y. Ginseng pharmacology: multiple molecular targets and recent clinical trials. Drugs Future 2010;35:399-407. https://doi.org/10.1358/dof.2010.035.05.1484393
  12. Lee D, Lee DS, Jung K, Hwang GS, Lee HL, Yamabe N, Lee HJ, Eom DW, Kim KH, Kang KS. Protective effect of ginsenoside Rb1 against tacrolimus-induced apoptosis in renal proximal tubular LLC-PK1 cells. J Ginseng Res 2018;42:75-80. https://doi.org/10.1016/j.jgr.2016.12.013
  13. Kim MK, Kang H, Baek CW, Jung YH, Woo YC, Choi GJ, Shin HY, Kim KS. Antinociceptive and anti-inflammatory effects of ginsenoside Rf in a rat model of incisional pain. J Ginseng Res 2018;42:183-91. https://doi.org/10.1016/j.jgr.2017.02.005
  14. Choi SY, Kim KJ, Song JH, Lee BY. Ginsenoside Rg5 prevents apoptosis by modulating heme-oxygenase-1/nuclear factor E2-related factor 2 signaling and alters the expression of cognitive impairment-associated genes in thermal stress-exposed HT22 cells. J Ginseng Res 2018;42:225-8. https://doi.org/10.1016/j.jgr.2017.02.002
  15. Shim JS, Song MY, Yim SV, Lee SE, Park KS. Global analysis of ginsenoside Rg1 protective effects in beta-amyloid-treated neuronal cells. J Ginseng Res 2017;41:566-71. https://doi.org/10.1016/j.jgr.2016.12.003
  16. Thomford N, Senthebane D, Rowe A, Munro D, Seele P, Maroyi A, Dzobo K. Natural products for drug discovery in the 21st century: innovations for novel drug discovery. Int J Mol Sci 2018;19:1578. https://doi.org/10.3390/ijms19061578
  17. He Y, Yang J, Lv Y, Chen J, Yin F, Huang J, Zheng Q. A review of ginseng clinical trials registered in the WHO international clinical trials registry platform. BioMed Res Int 2018;2018.
  18. Lu J-M, Yao Q, Chen C. Ginseng compounds: an update on their molecular mechanisms and medical applications. Curr Vasc Pharmacol 2009;7:293-302. https://doi.org/10.2174/157016109788340767
  19. Yun TK. Brief introduction of panax ginseng CA meyer. J Korean Med Sci 2001;16:S3. https://doi.org/10.3346/jkms.2001.16.S.S3
  20. Cho IH, Lee HJ, Kim Y-S. Differences in the volatile compositions of ginseng species (Panax sp.). J Agric Food Chem 2012;60:7616-22. https://doi.org/10.1021/jf301835v
  21. Baeg I-H, So S-H. The world ginseng market and the ginseng (Korea). J Ginseng Res 2013;37:1. https://doi.org/10.5142/jgr.2013.37.1
  22. Qi L-W, Wang C-Z, Yuan C-S. Isolation and analysis of ginseng: advances and challenges. Nat Prod Rep 2011;28:467-95. https://doi.org/10.1039/c0np00057d
  23. Yang W-z, Hu Y, Wu W-y, Ye M, Guo D-a. Saponins in the genus Panax L.(Araliaceae): a systematic review of their chemical diversity. Phytochemistry 2014;106:7-24. https://doi.org/10.1016/j.phytochem.2014.07.012
  24. Qi L-W, Wang C-Z, Du G-J, Zhang Z-Y, Calway T, Yuan C-S. Metabolism of ginseng and its interactions with drugs. Curr Drug Metabol 2011;12:818-22. https://doi.org/10.2174/138920011797470128
  25. Kim SJ, Choi S, Kim M, Park C, Kim GL, Lee SO, Kang W, Rhee DK. Effect of Korean Red Ginseng extracts on drug-drug interactions. J Ginseng Res 2018;42:370-8. https://doi.org/10.1016/j.jgr.2017.08.008
  26. Chen J, Li M, Chen L, Wang Y, Li S, Zhang Y, Zhang L, Song M, Liu C, Hua M, et al. Effects of processing method on the pharmacokinetics and tissue distribution of orally administered ginseng. J Ginseng Res 2018;42:27-34. https://doi.org/10.1016/j.jgr.2016.12.008
  27. Kim DH. Gut microbiota-mediated pharmacokinetics of ginseng saponins. J Ginseng Res 2018;42:255-63. https://doi.org/10.1016/j.jgr.2017.04.011
  28. Phaniendra A, Jestadi DB, Periyasamy L. Free radicals: properties, sources, targets, and their implication in various diseases. Indian J Clin Biochem 2015;30:11-26. https://doi.org/10.1007/s12291-014-0446-0
  29. Pham-Huy LA, He H, Pham-Huy C. Free radicals, antioxidants in disease and health. Int J Biomed Sci: IJBS 2008;4:89.
  30. Lobo V, Patil A, Phatak A, Chandra N. Free radicals, antioxidants and functional foods: impact on human health. Pharmacogn Rev 2010;4:118. https://doi.org/10.4103/0973-7847.70902
  31. Lee JW, Mo EJ, Choi JE, Jo YH, Jang H, Jeong JY, Jin Q, Chung HN, Hwang BY, Lee MK. Effect of Korean Red Ginseng extraction conditions on antioxidant activity, extraction yield, and ginsenoside Rg1 and phenolic content: optimization using response surface methodology. J Ginseng Res 2016;40:229-36. https://doi.org/10.1016/j.jgr.2015.08.001
  32. Zhou Y, Yang Z, Gao L, Liu W, Liu R, Zhao J, You J. Changes in element accumulation, phenolic metabolism, and antioxidative enzyme activities in the red-skin roots of Panax ginseng. J Ginseng Res 2017;41:307-15. https://doi.org/10.1016/j.jgr.2016.06.001
  33. Hossen MJ, Hong YD, Baek KS, Yoo S, Hong YH, Kim JH, Lee JO, Kim D, Park J, Cho JY. In vitro antioxidative and anti-inflammatory effects of the compound K-rich fraction BIOGF1K, prepared from Panax ginseng. J Ginseng Res 2017;41:43-51. https://doi.org/10.1016/j.jgr.2015.12.009
  34. Sohn S-H, Kim S-K, Kim Y-O, Kim H-D, Shin Y-S, Yang S-O, Kim S-Y, Lee S-W. A comparison of antioxidant activity of Korean White and Red Ginsengs on H2O2-induced oxidative stress in HepG2 hepatoma cells. J Ginseng Res 2013;37:442. https://doi.org/10.5142/jgr.2013.37.442
  35. Yang Y, Ren C, Zhang Y, Wu X. Ginseng: an nonnegligible natural remedy for healthy aging. Aging Dis 2017;8:708. https://doi.org/10.14336/AD.2017.0707
  36. Yang WS, Ratan ZA, Kim G, Lee Y, Kim M-Y, Kim J-H, Cho JY. 4-Isopropyl-2, 6-bis (1-phenylethyl) aniline 1, an analogue of KTH-13 isolated from Cordyceps bassiana, inhibits the NF-κB-mediated inflammatory response. Med Inflamm 2015;2015.
  37. Lee DC, Yang CL, Chik SC, Li JC, Rong J-h, Chan GC, Lau AS. Bioactivity-guided identification and cell signaling technology to delineate the immunomodulatory effects of Panax ginseng on human promonocytic U937 cells. J Transl Med 2009;7:34. https://doi.org/10.1186/1479-5876-7-34
  38. Jung JH, Kang IG, Kim DY, Hwang YJ, Kim ST. The effect of Korean red ginseng on allergic inflammation in a murine model of allergic rhinitis. J Ginseng Res 2013;37:167. https://doi.org/10.5142/jgr.2013.37.167
  39. Lee JH, Min DS, Lee CW, Song KH, Kim YS, Kim HP. Ginsenosides from Korean Red Ginseng ameliorate lung inflammatory responses: inhibition of the MAPKs/NF-kappaB/c-Fos pathways. J Ginseng Res 2018;42:476-84. https://doi.org/10.1016/j.jgr.2017.05.005
  40. Lee MJ, Chang BJ, Oh S, Nah SY, Cho IH. Korean Red Ginseng mitigates spinal demyelination in a model of acute multiple sclerosis by downregulating p38 mitogen-activated protein kinase and nuclear factor-kappaB signaling pathways. J Ginseng Res 2018;42:436-46. https://doi.org/10.1016/j.jgr.2017.04.013
  41. Choi JH, Jang M, Nah SY, Oh S, Cho IH. Multitarget effects of Korean Red Ginseng in animal model of Parkinson's disease: antiapoptosis, antioxidant, antiinflammation, and maintenance of blood-brain barrier integrity. J Ginseng Res 2018;42:379-88. https://doi.org/10.1016/j.jgr.2018.01.002
  42. Kang S, Park SJ, Lee AY, Huang J, Chung HY, Im DS. Ginsenoside Rg3 promotes inflammation resolution through M2 macrophage polarization. J Ginseng Res 2018;42:68-74. https://doi.org/10.1016/j.jgr.2016.12.012
  43. Lee I-A, Hyam SR, Jang S-E, Han MJ, Kim D-H. Ginsenoside Re ameliorates inflammation by inhibiting the binding of lipopolysaccharide to TLR4 on macrophages. J Agric Food Chem 2012;60:9595-602. https://doi.org/10.1021/jf301372g
  44. Rhule A, Navarro S, Smith JR, Shepherd DM. Panax notoginseng attenuates LPS-induced pro-inflammatory mediators in RAW264. 7 cells. J Ethnopharmacol 2006;106:121-8. https://doi.org/10.1016/j.jep.2005.12.012
  45. Kee JY, Jeon YD, Kim DS, Han YH, Park J, Youn DH, Kim SJ, Ahn KS, Um JY, Hong SH. Korean Red Ginseng improves atopic dermatitis-like skin lesions by suppressing expression of proinflammatory cytokines and chemokines in vivo and in vitro. J Ginseng Res 2017;41:134-43. https://doi.org/10.1016/j.jgr.2016.02.003
  46. Han BC, Ahn H, Lee J, Jeon E, Seo S, Jang KH, Lee SH, Kim CH, Lee GS. Nonsaponin fractions of Korean Red Ginseng extracts prime activation of NLRP3 inflammasome. J Ginseng Res 2017;41:513-23. https://doi.org/10.1016/j.jgr.2016.10.001
  47. Ahn JY, Choi IS, Shim JY, Yun EK, Yun YS, Jeong G, Song JY. The immunomodulator ginsan induces resistance to experimental sepsis by inhibiting Toll-like receptor-mediated inflammatory signals. Eur J Immunol 2006;36:37-45. https://doi.org/10.1002/eji.200535138
  48. Roca I, Akova M, Baquero F, Carlet J, Cavaleri M, Coenen S, Cohen J, Findlay D, Gyssens I, Heure O. The global threat of antimicrobial resistance: science for intervention. New Microbes New Infect 2015;6:22-9. https://doi.org/10.1016/j.nmni.2015.02.007
  49. Lee J, Lee Y-N, Lee Y-T, Hwang H, Kim K-H, Ko E-J, Kim M-C, Kang S-M. Ginseng protects against respiratory syncytial virus by modulating multiple immune cells and inhibiting viral replication. Nutrients 2015;7:1021-36. https://doi.org/10.3390/nu7021021
  50. Lee JS, Ko E-J, Hwang HS, Lee Y-N, Kwon Y-M, Kim M-C, Kang S-M. Antiviral activity of ginseng extract against respiratory syncytial virus infection. Int J Mol Med 2014;34:183-90. https://doi.org/10.3892/ijmm.2014.1750
  51. Park EH, Yum J, Ku KB, Kim HM, Kang YM, Kim JC, Kim JA, Kang YK, Seo SH. Red Ginseng-containing diet helps to protect mice and ferrets from the lethal infection by highly pathogenic H5N1 influenza virus. J Ginseng Res 2014;38:40-6. https://doi.org/10.1016/j.jgr.2013.11.012
  52. Yoo D-G, Kim M-C, Park M-K, Song J-M, Quan F-S, Park K-M, Cho Y-K, Kang S-M. Protective effect of Korean red ginseng extract on the infections by H1N1 and H3N2 influenza viruses in mice. J Med Food 2012;15:855-62. https://doi.org/10.1089/jmf.2012.0017
  53. Chan LY, Kwok HH, Chan RWY, Peiris MJS, Mak NK, Wong RNS, Chan MCW, Yue PYK. Dual functions of ginsenosides in protecting human endothelial cells against influenza H9N2-induced inflammation and apoptosis. J Ethnopharmacol 2011;137:1542-6. https://doi.org/10.1016/j.jep.2011.08.022
  54. Sung H, Kang S-M, Lee M-S, Kim TG, Cho Y-K. Korean red ginseng slows depletion of CD4 T cells in human immunodeficiency virus type 1-infected patients. Clin Diagn Lab Immunol 2005;12:497-501. https://doi.org/10.1128/CDLI.12.4.497-501.2005
  55. Cho YK, Kim JE. Effect of Korean Red Ginseng intake on the survival duration of human immunodeficiency virus type 1 patients. J Ginseng Res 2017;41:222-6. https://doi.org/10.1016/j.jgr.2016.12.006
  56. Cho YK, Kim JE, Woo JH. Genetic defects in the nef gene are associated with Korean Red Ginseng intake: monitoring of nef sequence polymorphisms over 20 years. J Ginseng Res 2017;41:144-50. https://doi.org/10.1016/j.jgr.2016.02.005
  57. Sung WS, Lee DG. The combination effect of Korean red ginseng saponins with kanamycin and cefotaxime against methicillin-resistant Staphylococcus aureus. Biol Pharm Bulletin 2008;31:1614-7. https://doi.org/10.1248/bpb.31.1614
  58. Pagidipati NJ, Gaziano TA. Estimating deaths from cardiovascular disease: a review of global methodologies of mortality measurement. Circulation 2013;127:749-56. https://doi.org/10.1161/CIRCULATIONAHA.112.128413
  59. So SH, Lee JW, Kim YS, Hyun SH, Han CK. Red ginseng monograph. J Ginseng Res 2018;42:549-61. https://doi.org/10.1016/j.jgr.2018.05.002
  60. Kim J-H. Cardiovascular diseases and Panax ginseng: a review on molecular mechanisms and medical applications. J Ginseng Res 2012;36:16. https://doi.org/10.5142/jgr.2012.36.1.16
  61. Qin N, Gong Q-h, Wei L-w, Wu Q, Huang X-n. Total ginsenosides inhibit the right ventricular hypertrophy induced by monocrotaline in rats. Biol Pharm Bulletin 2008;31:1530-5. https://doi.org/10.1248/bpb.31.1530
  62. Zhou Q, Jiang L, Xu C, Luo D, Zeng C, Liu P, Yue M, Liu Y, Hu X, Hu H. Ginsenoside Rg1 inhibits platelet activation and arterial thrombosis. Thromb Res 2014;133:57-65. https://doi.org/10.1016/j.thromres.2013.10.032
  63. Lee WM, Kim SD, Park MH, Cho JY, Park HJ, Seo GS, Rhee MH. Inhibitory mechanisms of dihydroginsenoside Rg3 in platelet aggregation: critical roles of ERK2 and cAMP. J Pharm Pharmacol 2008;60:1531-6. https://doi.org/10.1211/jpp.60.11.0015
  64. Hwang SY, Son DJ, Kim IW, Kim DM, Sohn SH, Lee JJ, Kim SK. Korean red ginseng attenuates hypercholesterolemia-enhanced platelet aggregation through suppression of diacylglycerol liberation in high-cholesterol-diet-fed rabbits. Phytother Res: An Int J Dev Pharmacol Toxicol Evalu Nat Prod Deriv 2008;22:778-83. https://doi.org/10.1002/ptr.2363
  65. Ji W, Gong B. Hypolipidemic effects and mechanisms of Panax notoginseng on lipid profile in hyperlipidemic rats. J Ethnopharmacol 2007;113:318-24. https://doi.org/10.1016/j.jep.2007.06.022
  66. Kopelman PG. Obesity as a medical problem. Nature 2000;404:635-43. https://doi.org/10.1038/35007508
  67. Sharmila J, Aravinthan A, Shin DG, Seo JH, Kim B, Kim NS, Kang CW, Kim JH. GBCK25, fermented ginseng, attenuates cardiac dysfunction in high fat diet-induced obese mice. J Ginseng Res 2018;42:356-60. https://doi.org/10.1016/j.jgr.2017.05.001
  68. Li Z, Kim HJ, Park MS, Ji GE. Effects of fermented ginseng root and ginseng berry on obesity and lipid metabolism in mice fed a high-fat diet. J Ginseng Res 2018;42:312-9. https://doi.org/10.1016/j.jgr.2017.04.001
  69. Koh EJ, Kim KJ, Choi J, Jeon HJ, Seo MJ, Lee BY. Ginsenoside Rg1 suppresses early stage of adipocyte development via activation of C/EBP homologous protein-10 in 3T3-L1 and attenuates fat accumulation in high fat diet-induced obese zebrafish. J Ginseng Res 2017;41:23-30. https://doi.org/10.1016/j.jgr.2015.12.005
  70. Karachaliou N, Gonzalez-Cao M, Crespo G, Drozdowskyj A, Aldeguer E, Gimenez-Capitan A, Teixido C, Molina-Vila MA, Viteri S, De Los Llanos Gil M, et al. Interferon gamma, an important marker of response to immune checkpoint blockade in non-small cell lung cancer and melanoma patients. Ther Adv Med Oncol 2018;10. 1758834017749748.
  71. Kim S-H, Park K-S. Effects of Panax ginseng extract on lipid metabolism in humans. Pharmacol Res 2003;48:511-3. https://doi.org/10.1016/S1043-6618(03)00189-0
  72. American Diabetes A. Diagnosis and classification of diabetes mellitus. Diabetes Care 2013;36(Suppl 1):S67-74. https://doi.org/10.2337/dc13-S067
  73. Choi MR, Kwak SM, Bang SH, Jeong JE, Kim DJ. Chronic saponin treatment attenuates damage to the pancreas in chronic alcohol-treated diabetic rats. J Ginseng Res 2017;41:503-12. https://doi.org/10.1016/j.jgr.2016.09.002
  74. OhMJ, Kim HJ, Park EY, Ha NH, Song MG, Choi SH, Chun BG, Kim DH. The effect of Korean Red Ginseng extract on rosiglitazone-induced improvement of glucose regulation in diet-induced obese mice. J Ginseng Res 2017;41:52-9. https://doi.org/10.1016/j.jgr.2015.12.011
  75. Yun SN, Moon SJ, Ko SK, Im BO, Chung SH. Wild ginseng prevents the onset of high-fat diet induced hyperglycemia and obesity in ICR mice. Arch Pharm Res 2004;27:790-6. https://doi.org/10.1007/BF02980150
  76. Vuksan V, Sung M-K, Sievenpiper JL, Stavro PM, Jenkins AL, Di Buono M, Lee K-S, Leiter LA, Nam KY, Arnason JT, et al. Korean red ginseng (Panax ginseng) improves glucose and insulin regulation in well-controlled, type 2 diabetes: results of a randomized, double-blind, placebo-controlled study of efficacy and safety. Nutr Metabol Cardiovasc Dis 2008;18:46-56. https://doi.org/10.1016/j.numecd.2006.04.003
  77. Cho SK, Kim D, Yoo D, Jang EJ, Jun JB, Sung YK. Korean Red Ginseng exhibits no significant adverse effect on disease activity in patients with rheumatoid arthritis: a randomized, double-blind, crossover study. J Ginseng Res 2018;42:144-8. https://doi.org/10.1016/j.jgr.2017.01.006
  78. Choi JH, Lee MJ, Jang M, Kim HJ, Lee S, Lee SW, Kim YO, Cho IH. Panax ginseng exerts antidepressant-like effects by suppressing neuroinflammatory response and upregulating nuclear factor erythroid 2 related factor 2 signaling in the amygdala. J Ginseng Res 2018;42:107-15. https://doi.org/10.1016/j.jgr.2017.04.012
  79. Park SY, Park JH, Kim HS, Lee CY, Lee HJ, Kang KS, Kim CE. Systems-level mechanisms of action of Panax ginseng: a network pharmacological approach. J Ginseng Res 2018;42:98-106. https://doi.org/10.1016/j.jgr.2017.09.001
  80. Yamada N, Araki H, Yoshimura H. Identification of antidepressant-like ingredients in ginseng root (Panax ginseng C.A. Meyer) using a menopausal depressive-like state in female mice: participation of 5-HT2A receptors. Psychopharmacology (Berl) 2011;216:589-99. https://doi.org/10.1007/s00213-011-2252-1
  81. Zhang H, Li Z, Zhou Z, Yang H, Zhong Z, Lou C. Antidepressant-like effects of ginsenosides: a comparison of ginsenoside Rb3 and its four deglycosylated derivatives, Rg3, Rh2, compound K, and 20(S)-protopanaxadiol in mice models of despair. Pharmacol Biochem Behav 2016;140:17-26. https://doi.org/10.1016/j.pbb.2015.10.018
  82. Iqbal K, del C, Alonso A, Chen S, Chohan MO, El-Akkad E, Gong C-X, Khatoon S, Li B, Liu F, et al. Tau pathology in Alzheimer disease and other tauopathies. Biochimica et Biophysica Acta (BBA) - Mol Basis Dis 2005;1739:198-210. https://doi.org/10.1016/j.bbadis.2004.09.008
  83. Chen F, Eckman EA, Eckman CB. Reductions in levels of the Alzheimer's amyloid beta peptide after oral administration of ginsenosides. Faseb J 2006;20:1269-71. https://doi.org/10.1096/fj.05-5530fje
  84. Sulzer D. Multiple hit hypotheses for dopamine neuron loss in Parkinson's disease. Trends Neurosci 2007;30:244-50. https://doi.org/10.1016/j.tins.2007.03.009
  85. Jenner P. Oxidative stress in Parkinson's disease. Ann Neurol 2003;53(Suppl 3):S26-36. discussion S36-28. https://doi.org/10.1002/ana.10483
  86. Chen XC, Chen Y, Zhu YG, Fang F, Chen LM. Protective effect of ginsenoside Rg1 against MPTP-induced apoptosis in mouse substantia nigra neurons. Acta Pharmacol Sin 2002;23:829-34.
  87. Shin E-J, Koh YH, Kim AY, Nah S-Y, Jeong JH, Chae J-S, Kim SC, Yen TPH, Yoon H-J, Kim W-K, et al. Ginsenosides attenuate kainic acid-induced synaptosomal oxidative stress via stimulation of adenosine A2A receptors in rat hippocampus. Behav Brain Res 2009;197:239-45. https://doi.org/10.1016/j.bbr.2008.08.038
  88. Liu X-y, Zhou X-y, Hou J-c, Zhu H, Wang Z, Liu J-x, Zheng Y-q. Ginsenoside Rd promotes neurogenesis in rat brain after transient focal cerebral ischemia via activation of PI3K/Akt pathway. Acta Pharmacol Sin 2015;36:421-8. https://doi.org/10.1038/aps.2014.156
  89. Lee ST, Chu K, Sim JY, Heo JH, Kim M. Panax ginseng enhances cognitive performance in Alzheimer disease. Alzheimer Dis Assoc Disord 2008;22:222-6. https://doi.org/10.1097/WAD.0b013e31816c92e6
  90. Smith RG, Caswell D, Carriere A, Zielke B. Variation in the ginsenoside content of American ginseng, Panax quinquefolius L., roots. Canadian J Botany 1996;74:1616-20. https://doi.org/10.1139/b96-195
  91. Tan S, Zhou F, Li N, Dong Q, Zhang X, Ye X, Guo J, Chen B, Yu Z. Anti-fatigue effect of ginsenoside Rb1 on postoperative fatigue syndrome induced by major small intestinal resection in rat. Biol Pharm Bull 2013;36:1634-9. https://doi.org/10.1248/bpb.b13-00522
  92. Zhong G, Jiang Y. Calcium channel blockage and anti-free-radical actions of ginsenosides. Chin Med J (Engl) 1997;110:28-9.
  93. Bella AJ, Shamloul R. Traditional plant aphrodisiacs and male sexual dysfunction. Phytother Res 2014;28:831-5. https://doi.org/10.1002/ptr.5074
  94. Lee S-H, Choi K-H, Cha K-M, Hwang S-Y, Park U-K, Jeong M-S, Hong J-Y, Han C-K, In G, Kopalli SR, et al. Protective effects of Korean Red Ginseng against sub-acute immobilization stress-induced testicular damage in experimental rats. J Ginseng Res 2019;43:125-34. https://doi.org/10.1016/j.jgr.2017.09.002
  95. Kopalli SR, Cha KM, Lee SH, Ryu JH, Hwang SY, Jeong MS, Sung JH, Kim SK. Pectinase-treated Panax ginseng protects against chronic intermittent heat stress-induced testicular damage by modulating hormonal and spermatogenesis-related molecular expression in rats. J Ginseng Res 2017;41:578-88. https://doi.org/10.1016/j.jgr.2016.12.001
  96. Park J, Song H, Kim SK, Lee MS, Rhee DK, Lee Y. Effects of ginseng on two main sex steroid hormone receptors: estrogen and androgen receptors. J Ginseng Res 2017;41:215-21. https://doi.org/10.1016/j.jgr.2016.08.005
  97. Hong B, Ji YH, Hong JH, Nam KIY, Ahn TY. A double-blind crossover study evaluating the efficacy of Korean red ginseng in patients with erectile dysfunction: a preliminary report. J Urol 2002;168:2070-3. https://doi.org/10.1016/S0022-5347(05)64298-X
  98. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A Canc J Clin 2018;68:394-424. https://doi.org/10.3322/caac.21492
  99. Ahuja A, Kim JH, Kim J-H, Yi Y-S, Cho JY. Functional role of ginseng-derived compounds in cancer. J Ginseng Res 2018;42:248-54. https://doi.org/10.1016/j.jgr.2017.04.009
  100. Yu JS, Roh HS, Baek KH, Lee S, Kim S, So HM, Moon E, Pang C, Jang TS, Kim KH. Bioactivity-guided isolation of ginsenosides from Korean Red Ginseng with cytotoxic activity against human lung adenocarcinoma cells. J Ginseng Res 2018;42:562-70. https://doi.org/10.1016/j.jgr.2018.02.004
  101. Lee H, Lee S, Jeong D, Kim SJ. Ginsenoside Rh2 epigenetically regulates cell-mediated immune pathway to inhibit proliferation of MCF-7 breast cancer cells. J Ginseng Res 2018;42:455-62. https://doi.org/10.1016/j.jgr.2017.05.003
  102. Kim EJ, Kwon KA, Lee YE, Kim JH, Kim SH. Korean Red Ginseng extract reduces hypoxia-induced epithelial-mesenchymal transition by repressing NF-kappaB and ERK1/2 pathways in colon cancer. J Ginseng Res 2018;42:288-97. https://doi.org/10.1016/j.jgr.2017.03.008
  103. Shin DH, Leem DG, Shin JS, Kim JI, Kim KT, Choi SY, Lee MH, Choi JH, Lee KT. Compound K induced apoptosis via endoplasmic reticulum Ca(2+) release through ryanodine receptor in human lung cancer cells. J Ginseng Res 2018;42:165-74. https://doi.org/10.1016/j.jgr.2017.01.015
  104. Yao CJ, Chow JM, Chuang SE, Chang CL, Yan MD, Lee HL, Lai IC, Lin PC, Lai GM. Induction of Forkhead Class box O3a and apoptosis by a standardized ginsenoside formulation, KG-135, is potentiated by autophagy blockade in A549 human lung cancer cells. J Ginseng Res 2017;41:247-56. https://doi.org/10.1016/j.jgr.2016.04.003
  105. Kim HS, Lim JM, Kim JY, Kim Y, Park S, Sohn J. Panaxydol, a component of P anax ginseng, induces apoptosis in cancer cells through EGFR activation and ER stress and inhibits tumor growth in mouse models. Int J Canc 2016;138:1432-41. https://doi.org/10.1002/ijc.29879
  106. Shin HR, Kim JY, Yun TK, Morgan G, Vainio H. The cancer-preventive potential of Panax ginseng: a review of human and experimental evidence. Canc Causes Control 2000;11:565-76. https://doi.org/10.1023/A:1008980200583
  107. Lu J-M, Weakley M, S, Yang Z, Hu M, Yao Q, Chen C. Ginsenoside Rb1 directly scavenges hydroxyl radical and hypochlorous acid. Curr Pharm Des 2012;18:6339-47. https://doi.org/10.2174/138161212803832254
  108. Nakata H, Kikuchi Y, Tode T, Hirata J, Kita T, Ishii K, Kudoh K, Nagata I, Shinomiya N. Inhibitory effects of ginsenoside Rh2 on tumor growth in nude mice bearing human ovarian cancer cells. Jpn J Canc Res 1998;89:733-40. https://doi.org/10.1111/j.1349-7006.1998.tb03278.x
  109. Xiaoguang C, Hongyan L, Xiaohong L, Zhaodi F, Yan L, Lihua T, Rui H. Cancer chemopreventive and therapeutic activities of red ginseng. J Ethnopharmacol 1998;60:71-8. https://doi.org/10.1016/S0378-8741(97)00133-5
  110. Baek KS, Yi YS, Son YJ, Jeong D, Sung NY, Aravinthan A, Kim JH, Cho JY. Comparison of anticancer activities of Korean Red Ginseng-derived fractions. J Ginseng Res 2017;41:386-91. https://doi.org/10.1016/j.jgr.2016.11.001
  111. Wang X, Su GY, Zhao C, Qu FZ, Wang P, Zhao YQ. Anticancer activity and potential mechanisms of 1C, a ginseng saponin derivative, on prostate cancer cells. J Ginseng Res 2018;42:133-43. https://doi.org/10.1016/j.jgr.2016.12.014
  112. Kim AD, Kang KA, Zhang R, Lim CM, Kim HS, Kim DH, Jeon YJ, Lee CH, Park J, Chang WY. Ginseng saponin metabolite induces apoptosis in MCF-7 breast cancer cells through the modulation of AMP-activated protein kinase. Environ Toxicol Pharmacol 2010;30:134-40. https://doi.org/10.1016/j.etap.2010.04.008
  113. Barton DL, Liu H, Dakhil SR, Linquist B, Sloan JA, Nichols CR, McGinn TW, Stella PJ, Seeger GR, Sood A. Wisconsin Ginseng (Panax quinquefolius) to improve cancer-related fatigue: a randomized, double-blind trial, N07C2. J Nat Canc Ins 2013;105:1230-8. https://doi.org/10.1093/jnci/djt181
  114. Xu W, Choi H-K, Huang L. State of Panax ginseng research: a global analysis. Molecules 2017;22:1518. https://doi.org/10.3390/molecules22091518
  115. Paik DJ, Lee CH. Review of cases of patient risk associated with ginseng abuse and misuse. J Ginseng Res 2015;39:89-93. https://doi.org/10.1016/j.jgr.2014.11.005
  116. Seo HW, Suh JH, So SH, Kyung JS, Kim YS, Han CK. Subacute oral toxicity and bacterial mutagenicity study of Korean Red Ginseng oil. J Ginseng Res 2017;41:595-601. https://doi.org/10.1016/j.jgr.2017.01.009
  117. Ryu S-J, Chien Y-Y. Ginseng-associated cerebral arteritis. Neurology 1995;45: 829-30. https://doi.org/10.1212/WNL.45.4.829
  118. Chen SX, Cohen PR. The ginseng pimple: an inflammatory papule following ginseng consumption. Dermatology Online Journal 2018;24.
  119. Parlakpinar H, Ozhan O, Ermis N, Vardi N, Cigremis Y, Tanriverdi LH, Colak C, Acet A. Acute and subacute effects of low versus high doses of standardized panax ginseng extract on the heart: an experimental study. Cardiovasc Toxicol 2019:1-15.
  120. Bressler R. Herb-drug interactions: interactions between ginseng and prescription medications. Geriatrics (Basel, Switzerland) 2005;60:16-7.
  121. Janetzky K, Morreale AP. Probable interaction between warfarin and ginseng. Am J Health-Sys Pharm 1997;54:692-3. https://doi.org/10.1093/ajhp/54.6.692
  122. Dong H, Ma J, Li T, Xiao Y, Zheng N, Liu J, Gao Y, Shao J, Jia L. Global deregulation of ginseng products may be a safety hazard to warfarin takers: solid evidence of ginseng-warfarin interaction. Sci Rep 2017;7:5813. https://doi.org/10.1038/s41598-017-05825-9
  123. Seely D, Dugoua J-J, Perri D, Mills EM, Koren G. Safety and efficacy of panax ginseng during pregnancy and lactation. J Population Therap Clin Pharmacol 2008;15.
  124. Kim H, Lee JH, Kim JE, Kim YS, Ryu CH, Lee HJ, Kim HM, Jeon H, Won HJ, Lee JY, et al. Micro-/nano-sized delivery systems of ginsenosides for improved systemic bioavailability. J Ginseng Res 2018;42:361-9. https://doi.org/10.1016/j.jgr.2017.12.003
  125. Hoang T, Ramadass K, Loc TT, Mai TT, Giang LD, Thang VV, Tuan TM, Chinh NT. Novel drug delivery system based on ginsenoside Rb1 loaded to chitosan/alginate nanocomposite films. J Nanosci Nanotechnol 2019;19:3293-300. https://doi.org/10.1166/jnn.2019.16116
  126. Singh H, Du J, Singh P, Mavlonov GT, Yi TH. Development of super-paramagnetic iron oxide nanoparticles via direct conjugation with ginsenosides and its in-vitro study. J Photochem Photobiol B: Biol 2018;185:100-10. https://doi.org/10.1016/j.jphotobiol.2018.05.030
  127. Dai L, Liu K, Si C, Wang L, Liu J, He J, Lei J. Ginsenoside nanoparticle: a new green drug delivery system. J Mater Chem B 2016;4:529-38. https://doi.org/10.1039/C5TB02305J
  128. Yao H, Li J, Song Y, Zhao H, Wei Z, Li X, Jin Y, Yang B, Jiang J. Synthesis of ginsenoside Re-based carbon dots applied for bioimaging and effective inhibition of cancer cells. Int J Nanomed 2018;13:6249. https://doi.org/10.2147/IJN.S176176
  129. Zhao X, Wang J, Song Y, Chen X. Synthesis of nanomedicines by nanohybrids conjugating ginsenosides with auto-targeting and enhanced MRI contrast for liver cancer therapy. Drug Dev Ind Pharm 2018;44:1307-16. https://doi.org/10.1080/03639045.2018.1449853
  130. Shen J, Zhao Z, Shang W, Liu C, Zhang B, Zhao L, Cai H. Ginsenoside Rg1 nanoparticle penetrating the blood-brain barrier to improve the cerebral function of diabetic rats complicated with cerebral infarction. Int J Nanomed 2017;12:6477. https://doi.org/10.2147/IJN.S139602
  131. Aalinkeel R, Kutscher HL, Singh A, Cwiklinski K, Khechen N, Schwartz SA, Prasad PN, Mahajan SD. Neuroprotective effects of a biodegradable poly (lactic-co-glycolic acid)-ginsenoside Rg3 nanoformulation: a potential nanotherapy for Alzheimer's disease? J Drug Targ 2018;26:182-93. https://doi.org/10.1080/1061186X.2017.1354002

피인용 문헌

  1. Particle size of ginseng (Panax ginseng Meyer) insoluble dietary fiber and its effect on physicochemical properties and antioxidant activities vol.63, pp.1, 2021, https://doi.org/10.1186/s13765-020-00558-2
  2. Anticancer Activities of Ginsenosides, the Main Active Components of Ginseng vol.2021, 2021, https://doi.org/10.1155/2021/8858006
  3. Adaptogenic effects of Panax ginseng on modulation of immune functions vol.45, pp.1, 2021, https://doi.org/10.1016/j.jgr.2020.09.004
  4. Antioxidant Effect and Sensory Evaluation of Yogurt Supplemented with Hydroponic Ginseng Root Extract vol.10, pp.3, 2021, https://doi.org/10.3390/foods10030639
  5. Ginsenoside CK induces apoptosis of human cervical cancer HeLa cells by regulating autophagy and endoplasmic reticulum stress vol.12, pp.12, 2021, https://doi.org/10.1039/d1fo00348h
  6. Co-Fermentation by Lactobacillus brevis B7 Improves the Antioxidant and Immunomodulatory Activities of Hydroponic Ginseng-Fortified Yogurt vol.10, pp.9, 2021, https://doi.org/10.3390/antiox10091447
  7. Wound Healing Effect of Gintonin Involves Lysophosphatidic Acid Receptor/Vascular Endothelial Growth Factor Signaling Pathway in Keratinocytes vol.22, pp.18, 2021, https://doi.org/10.3390/ijms221810155
  8. Gibberellins enhance plant growth and ginsenoside content in Panax ginseng vol.48, pp.3, 2021, https://doi.org/10.5010/jpb.2021.48.3.186
  9. Simultaneous quantitative assays of 15 ginsenosides from 119 batches of ginseng samples representing 12 traditional Chinese medicines by ultra-high performance liquid chromatography coupled with charg vol.1655, 2021, https://doi.org/10.1016/j.chroma.2021.462504
  10. Korean traditional foods as antiviral and respiratory disease prevention and treatments: A detailed review vol.116, 2021, https://doi.org/10.1016/j.tifs.2021.07.037
  11. Isolation and Identification of Non-Conjugated Linoleic Acid from Processed Panax ginseng Using LC-MS/MS and 1H-NMR vol.8, pp.11, 2021, https://doi.org/10.3390/separations8110208
  12. Development of natural products for anti-PD-1/PD-L1 immunotherapy against cancer vol.281, 2021, https://doi.org/10.1016/j.jep.2021.114370
  13. Immunological Separation of Bioactive Natural Compounds from Crude Drug Extract and Its Application for Cell-Based Studies vol.10, pp.4, 2021, https://doi.org/10.3390/antib10040048
  14. Glycogen-based pH and redox sensitive nanoparticles with ginsenoside Rh2 for effective treatment of ulcerative colitis vol.280, 2021, https://doi.org/10.1016/j.biomaterials.2021.121077
  15. Enhanced biotransformation of the minor ginsenosides in red ginseng extract by Penicillium decumbens β-glucosidase vol.153, 2022, https://doi.org/10.1016/j.enzmictec.2021.109941
  16. Predominance of oleanane-type ginsenoside R0 and malonyl esters of protopanaxadiol-type ginsenosides in the 20-year-old suspension cell culture of Panax japonicus C.A. Meyer vol.177, 2021, https://doi.org/10.1016/j.indcrop.2021.114417