DOI QR코드

DOI QR Code

Electroconductive Graphene-Combined Polycaprolactone Electrospun Films for Biological Applications

생체적 적용을 위한 전기전도성을 갖는 그래핀과 폴리카프로락톤 복합물질 전기방사 섬유형 필름

  • Oh, Jun-Sung (Department of Nano-Biomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University) ;
  • Lee, Eun-Jung (Department of Nano-Biomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University)
  • 오준성 (단국대학교 나노바이오의과학과) ;
  • 이은정 (단국대학교 나노바이오의과학과)
  • Received : 2021.03.31
  • Accepted : 2021.04.24
  • Published : 2021.05.27

Abstract

This study produces electroconductive polycaprolactone (PCL)-based film with different amounts of graphene (G) through electrospinning, and the characteristics of the produced G/PCL composites are investigated. The G/PCL results are analyzed by comparing them with those obtained using pure PCL electrospun film as a control. The morphology of electrospun material is analyzed through scanning electron microscopy and transmission electron microscopy. Mechanical and electrical properties are also evaluated. Composites containing 1 % graphene have the highest elongation rate, and 5 % samples have the highest strength and elasticity. Graphene contents > 25 % show electro-conductivity, which level improves with increase of graphene content. Biological characteristics of G/PCL composites are assessed through behavioral analysis of neural cell attachment and proliferation. Cell experiments reveal that compositions < 50 % show slightly reduced cell viability. Moreover, graphene combinations facilitated cell proliferation compared to pure PCL. These results confirm that a 25 % G/PCL composition is best for application to systems that introduce external stimuli such as electric fields and electrodes to lead to synergistic efficiency of tissue regeneration.

Keywords

References

  1. C. Grochowski, E. Radzikowska and R. Maciejewski, Clin. Neurol. Neurosurg., 173, 8 (2018). https://doi.org/10.1016/j.clineuro.2018.07.013
  2. I. M. Pereira, A. Marote, A. J. Salgado and N. A. Silva, Pharmaceuticals, 12, (2019).
  3. M. P. Prabhakaran, J. Venugopal, C. K. Chan and S. Ramakrishna, Nanotechnology, 19, 455102 (2008). https://doi.org/10.1088/0957-4484/19/45/455102
  4. M. Jahromi, S. Razavi and A. Bakhtiari, J. Tissue Eng. Regener. Med., 13, 2077 (2019). https://doi.org/10.1002/term.2945
  5. L. Dvali and S. Mackinnon, Clin. Plast. Surg., 30, 203 (2003). https://doi.org/10.1016/S0094-1298(02)00096-2
  6. P. Konofaos and J. P. V. Halen, J. Reconstr. Microsurg., 29, 149 (2013). https://doi.org/10.1055/s-0032-1333316
  7. S. Blacher, V. Maquet, F. Schils, D. Martin, J. Schoenen, G. Moonen, R. Jerome and J. P. Pirard, Biomaterials, 24, 1033 (2003). https://doi.org/10.1016/S0142-9612(02)00423-4
  8. S. K. Dhirendra, V. Rajesh and S. Kirubanandan, Curr. Top. Med. Chem., 8, 341 (2008). https://doi.org/10.2174/156802608783790893
  9. S. Wang, J. Qiu, W. Guo, X. Yu, J. Nie, J. Zhang, X. Zhang, Z. Liu, X. Mou, L. Li and H. Liu, Adv. Biosyst., 1, 1600042 (2017). https://doi.org/10.1002/adbi.201600042
  10. S. Agarwal and S. Jiang, Encyclopedia of Polymeric Nanomaterials, p. 1, Springer, Berlin, Heidelberg (2014).
  11. A. Greiner and J. H. Wendorff, Angew. Chem. Int. Ed. Engl., 46, 5670 (2007). https://doi.org/10.1002/anie.200604646
  12. S. Duda, L. Dreyer, P. Behrens, S. Wienecke, T. Chakradeo, B. Glasmacher and K. Haastert-Talini, BioMed Res. Int., 2014, 835269 (2014). https://doi.org/10.1155/2014/835269
  13. D. P. Bhattarai, L. E. Aguilar, C. H. Park and C. S. Kim, Membranes (Basel)., 8, 62 (2018). https://doi.org/10.3390/membranes8030062
  14. R. C. Thomson, M. J. Yaszemski, J. M. Powers and A. G. Mikos, Biomaterials, 19, 1935 (1998). https://doi.org/10.1016/S0142-9612(98)00097-0
  15. F. Wang, Y. Wu and Y. Huang, Compos. Appl. Sci. Manuf., 110, 126 (2018). https://doi.org/10.1016/j.compositesa.2018.04.023
  16. F. Liu, X. Wang, T. Chen, N. Zhang, Q. Wei, J. Tian, Y. Wang, C. Ma and Y. Lu, J. Adv. Res., 21, 91 (2020). https://doi.org/10.1016/j.jare.2019.10.002
  17. R. G. Bai, N. Ninan, K. Muthoosamy and S. Manickam, Prog. Mater. Sci., 91, 24 (2018). https://doi.org/10.1016/j.pmatsci.2017.08.004
  18. V. Lundin, A. Herland, M. Berggren, E. W. H. Jager and A. I. Teixeira, PLOs ONE, 6, e18624 (2011). https://doi.org/10.1371/journal.pone.0018624
  19. V. Palmieri, F. Sciandra, M. Bozzi, M. D, Spirito and M. Papi, Front. Bioeng. Biotechnol., 8, 383 (2020). https://doi.org/10.3389/fbioe.2020.00383
  20. G. Savini and R. L. Orefice, J. Mater. Res. Technol., 9, 16387 (2020). https://doi.org/10.1016/j.jmrt.2020.11.090
  21. M. Hakamada, T. Kuromura, Y. Chen, H. Kusuda and M. Mabuchi, Mater. Trans., 48, 32 (2007). https://doi.org/10.2320/matertrans.48.32
  22. M. Srikanth, R. Asmatulu, K. Cluff and L. Yao, ACS Omega, 4, 5044 (2019). https://doi.org/10.1021/acsomega.9b00197
  23. P. Chen, A. E. Rodda, H. C. Parkington and J. S. Forsythe, Electrospun Materials for Tissue Engineering and Biomedical Applications, p. 299, Woodhead Publishing (2017).
  24. P. Ginestra, J. Mech. Behav. Biomed. Mater., 100, 103387 (2019). https://doi.org/10.1016/j.jmbbm.2019.103387