DOI QR코드

DOI QR Code

지진시 옹벽의 수평변위 예측기법의 개발

Development of Technique for Predicting Horizontal Displacement of Retaining Wall Induced by Earthquake

  • 이승현 (선문대학교 건설시스템안전공학과) ;
  • 김병일 (명지대학교 토목환경공학과)
  • Lee, Seung-Hyun (Department of Civil Infrastructure Systems and Safety Engineering, Sunmoon University) ;
  • Kim, Byoung-Il (Department of Civil and Environmental Engineering, Myongji University)
  • 투고 : 2021.01.06
  • 심사 : 2021.05.07
  • 발행 : 2021.05.31

초록

본 연구에서는 지진시 옹벽의 수평변위량을 예측하는 기법을 개발하고자 옹벽과 지반의 진동시스템에 대한 운동 방정식을 유도하고 그로부터 도출되는 미분방정식은 Runge-Kutta-Nystrom 방법을 이용하여 해를 구하였다. 이러한 계산과정을 고려하여 지진시 옹벽의 수평변위를 얻는 해석과정을 프로그램화하였는데 해석기법의 핵심이 되는 변위-힘 관계를 탄성완전소성으로 모델링하는 계산 알고리즘을 제시하였다. 개발된 프로그램을 가정한 옹벽문제에 적용한 결과 해석을 통해 얻은 시간-변위관계와 시간-힘 관계 그리고 변위-힘 관계는 합리적인 결과를 보임을 알 수 있었다. 본 연구를 통해 개발된 해석기법에 의하면 진동시간이 경과함에 따라 옹벽에는 전면방향으로 변위가 발생되게 되는데 사이클당 변위량은 시간이 경과됨에 따라 일정한 값에 수렴됨을 알 수 있었다. 자연 진동주기에 따른 옹벽의 변위를 계산해 보았는데 한 개의 스프링을 적용한 경우의 스프링상수로부터 유도되는 자연 진동주기가 지진 진동주기와 같을 때 보다는 약간의 차이를 보일 때 변위가 가장 크게 계산되었다. 이러한 이유는 옹벽-지반 진동시스템이 강성이 다른 두 개의 스프링으로 모사되었기 때문으로 볼 수 있다.

To develop the technique for predicting the horizontal displacement of a retaining wall induced by an earthquake, an equation of motion that depicts the retaining wall-soil vibrating system was derived. The resulting differential equation was solved using the Runge-Kutta-Nystr?m method. Considering the pre-mentioned derivation process, the analysis procedures for obtaining horizontal displacement induced by an earthquake were programmed. The core algorithm of the displacement-force relationship, which is the main engine of the developed program, was suggested. Considering the results obtained by adopting the developed program to the assumed retaining wall under an earthquake, the relationships between the time-displacement, time-force, and displacement-force were reasonable. According to the results computed by the program, the displacements to the front direction of the wall occurred, and the displacement per cycle converged after some cycles elapsed. Displacements with a natural period were calculated, which showed that the maximum displacement was observed when the natural frequency was slightly different from the excitation frequency rather than the same values of the two frequencies. This happens because the vibrating system was modeled by two springs with different stiffness.

키워드

참고문헌

  1. H. N. Nazarian and A. H. Hadjian, "Earthquake-Induced Lateral Soil Pressures on Structures", Journal, Geotechnical Engineering, ASCE, Vol. 105, No. GT9, pp. 1049-1066, 1979. DOI: https://doi.org/10.1061/AJGEB6.0000852
  2. A. Pain, D. Choudhury, S. K. Bhattacharyya, "Seismic stability of retaining wall-soil sliding interaction using modified pseudo-dynamic method", Geotechnique Letters, Vol. 5, Issue 1, pp. 56-61, 2015. DOI: https://doi.org/10.1680/geolett.14.00116
  3. Bellezza, I, "A new pseudo-dynamic approach for seismic active soil thrust", Geotech. Geol. Engng,, 32, No. 2, pp. 561-576, 2014. DOI: https://doi.org/10.1007/s10706-014-9734-y
  4. P. Nandkumaran and V. H. Joshi, "Static and Dynamic Active Earth Pressures Behind Retaining Walls", Bull, Indian Society of Earthquake Technology, Sept., Vol. 10, No. 3, 1973a.
  5. Mononobe, N. and Matsuo, H., "On the Determination of Earth Pressure during Earthquakes", Proceedings, World Engg. Conference, Vol. 9, pp.176, 1929.
  6. S. Okabe, "General Theory on Earth Pressure and Seismic Stability of Retaining Walls and Dams", Japan Society of Civil Engineers, Vol. 6, pp. 1277-1323, 1924.
  7. Okabe, S., "General Theory of Earth Pressure", J. of the Japanese Society of Civil Engineers, Tokyo, Japan, 12(1), 1926.
  8. P. Nandkumaran, "Behavior of Retaining Walls During Earthquakes", Chapter 17 in "Earthquake Engineering", Jai Krishna 60th Anniversary Volume, Sarita Prakashan, Meerut, U.P., 1974.
  9. E. A. Rafnsson, S. Prakash, "Stiffness and Damping Parameters for Dynamic Analysis of Retaining Walls", Proceedings: Second International Conference on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics, March 11-15, St. Louis, Missouri, No. 1.67, pp. 1943-1951, 1991.
  10. D. J. Inman, Engineering Vibration, Prentice-Hall, Inc., pp. 112-120, 2001.
  11. J. M. Biggs, Introduction to Structural Dynamics, McGraw-Hill Book Co., New York, pp. 45-56, 1963.
  12. E. Kreyszig, Advanced engineering mathematics, John Wiley and Sons, pp. 842-847, 1984.
  13. T. E. Simos, E. Dimas, A. B. Sideridis, "A Runge-Kutta-Nystrom method for the numerical integration of special second-order periodic initial-value problems", Journal of Computational and Applied Mathematics, Vol. 51, Issue 3, pp. 317-326, 1994. DOI: https://doi.org/10.1016/0377-0427(92)00114-O
  14. Jaky, J., "The Coefficient of Earth Pressure at Rest", Journal for Society of Hungarian Architects and Engineers, October, pp. 355-358, 1944.
  15. P. Nandkumaran, "Behavior of Retaining Walls Under Dynamic Loads", Ph.D. Thesis, Roorkee University, Roorkee, India, 1973b.
  16. S. Prakash, "Analysis of Rigid Retaining Walls During Earthquakes", Proceedings: First International Conference on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics, St. Louis, Missouri, pp. 993-1020, 1981.