Acknowledgement
이 논문은 2020년도 정부(교육부)의 재원으로 한국 연구재단 기초연구사업의 지원을 받아 수행된 연구임(No. 2020R1I1A1A01064020).
References
- X. Zou, and Y. Zhang, 'Noble metal-free hydrogen evolution catalysts for water splitting' Chemical Society Review, 44, 5148-5180 (2015). https://doi.org/10.1039/C4CS00448E
- N. Armaroli, and V. Balzani, 'The Future of Energy Supply: Challenges and Opportunities' Angewante Chemie International Edition, 46, 52-66 (2007). https://doi.org/10.1002/anie.200602373
- 권용근, 조은애, '수전해 기술 동향 및 전망', 재료마당, 대한금속재료학회, 28, 4-12 (2015)
- H. Schafer, and M. Chatenet, 'Steel: The Resurrection of a Forgotten Water-Splitting Catalyst' ACS Energy Letter, 3, 574-591 (2018). https://doi.org/10.1021/acsenergylett.8b00024
- D. Chen, R. Lu, Z. Pu, J. Zhu, H. -W. Li, F. Liu, S. Hu, X. Luo, J. Wu, Y. Zhao, and S. Mu, 'Ru-doped 3D flower-like bimetallic phosphide with a climbing effect on overall water splitting' Applied Catalysis B - Environmental, 279, 119396 (2020). https://doi.org/10.1016/j.apcatb.2020.119396
- S. Anantharaj, S. R. Ede, K. Sakthikumar, K. Karthick, S. Mishra, and S. Kundu, 'Recent Trends and Perspectives in Electrochemical Water Splitting with an Emphasis on Sulfide, Selenide, and Phosphide Catalysts of Fe, Co, and Ni: A Review' ACS Catalysts, 6, 4660-4672 (2016). https://doi.org/10.1021/acscatal.6b00965
- K. Honda, and A. Fujishima, 'Electrochemical Photolysis of Water at a Semiconductor Electrode' Nature, 238, 37-38 (1972). https://doi.org/10.1038/238037a0
- W. Han, K. Kuepper, P. Hou, W. Akram, H. Eickmeier, J. Hardege, M. Steinhart, and H. Schafer, 'Free-Sustaining Three-Dimensional S235 Steel-Based Porous Electrocatalyst for Highly Efficient and Durable Oxygen Evolution' Chem. Sus. Chem., 11, 3661-3671 (2018). https://doi.org/10.1002/cssc.201801351
- T. Shinagawa, A. T. Garcia-Esparza, and K. Takanabe, 'Insight on Tafel slopes from a microkinetic analysis of aqueous electrocatalysis for energy conversion' Scientific Report, 5, 13801 (2015). https://doi.org/10.1038/srep13801
- X. Rong, J. Parolin, and A. M. Kolpak, 'A Fundamental Relationship between Reaction Mechanism and Stability in Metal Oxide Catalysts for Oxygen Evolution' ACS Catalysts, 6, 1153-1158 (2016). https://doi.org/10.1021/acscatal.5b02432
- Y. -F. Li, and A. Selloni, 'Mechanism and Activity of Water Oxidation on Selected Surfaces of Pure and FeDoped NiOx' ACS Catalysts, 4, 1148-1153 (2014). https://doi.org/10.1021/cs401245q
- W. Zhou, H. Liu, J. Wang, D. Liu, G. Du, and J. Cui, 'Ag2O/TiO2 Nanobelts Heterostructure with Enhanced Ultraviolet and Visible Photocatalytic Activity' ACS Applied Materials and Interfaces, 2, 2385-2392 (2010). https://doi.org/10.1021/am100394x
- L. Jiang, G. Zhou, J. Mi, and Z. Wu, 'Fabrication of visible-light-driven one-dimensional anatase TiO2/Ag heterojunction plasmonic photocatalyst' Catalysis Communication, 24, 48-51 (2012). https://doi.org/10.1016/j.catcom.2012.03.017
- J. Creus, J. De Tovar, N. Romero, J. Gracia-Anton, K. Philippot, R. Bofill, and X. Sala, 'Ruthenium Nanoparticles for Catalytic Water Splitting' Chem. Sus. Chem., 12, 2493-2514 (2019). https://doi.org/10.1002/cssc.201900393
- A. Singh, S. L. Y. Chang, R. K. Hocking, U. Bach, and L. Spiccia, 'Highly active nickel oxide water oxidation catalysts deposited from molecular complexes' Energy and Environmental Science, 2, 579-586 (2013).
- R. D. Smith, M. S. Prevot, R. D. Fagan, S. Trudel, and C. P. Berlinquette, 'Water Oxidation Catalysis: Electrocatalytic Response to Metal Stoichiometry in Amorphous Metal Oxide Films Containing Iron, Cobalt, and Nickel' Journal of American Chemical Society, 135, 11580-11586 (2013). https://doi.org/10.1021/ja403102j
- J. J. Fillol, Z. Codola, I. Garcia-Bosch, L. Gomez, J. J. Pla, and M. Costas, 'Efficient water oxidation catalysts based on readily available iron coordination complexes' Nature Chemistry, 3, 807-813 (2011). https://doi.org/10.1038/nchem.1140
- Q. -Q. Chen, C. -C. Hou, C. -J. Wang, X. Yang, R. Shi, and Y. Chen, 'Ir4+-Doped NiFe LDH to expedite hydrogen evolution kinetics as a Pt-like electrocatalyst for water splitting' Chemical Communication, 54, 6400-6403 (2018). https://doi.org/10.1039/C8CC02872A
- X. Gao, D. Chen, J. Qi, F. Li, Y. Song, W. Zhang, and R. Cao, 'NiFe Oxalate Nanomesh Array with Homogenous Doping of Fe for Electrocatalytic Water Oxidation' Small, 15, 1904579 (2019). https://doi.org/10.1002/smll.201904579
- G. Chen, T. Wang, J. Zhang, P. Liu, H. Sun, X. Zhuang, M. Chen, and X. Feng, 'Accelerated Hydrogen Evolution Kinetics on NiFe-Layered Double Hydroxide Electrocatalysts by Tailoring Water Dissociation Active Sites' Advanced Materials, 30, 1706279 (2018). https://doi.org/10.1002/adma.201706279
- Y. Li, S. Guo, T. Jin, Y. Wang, F. Cheng, and L. Jiao, 'Promoted synergy in core-branch CoP@NiFe-OH nanohybrids for efficient electrochemical-/ photovoltage-driven overall water splitting' Nano Energy, 63, 103821 (2019). https://doi.org/10.1016/j.nanoen.2019.06.017
- M. Qu, Y. Jiang, M. Yang, S. Liu, Q. Guo, W. Shen, M. Li, and R. He, 'Regulating electron density of NiFe-P nanosheets electrocatalysts by a trifle of Ru for high-efficient overall water splitting' Applied Catalysis B - Environmental, 263, 118324 (2020). https://doi.org/10.1016/j.apcatb.2019.118324
- J. Li, P. Xu, R. Zhou, R. Li, L. Qiu, S. P. Jiang, and D. Yuan, 'Co9S8-Ni3S2 heterointerfaced nanotubes on Ni foam as highly efficient and flexible bifunctional electrodes for water splitting' Electrochimica Acta, 299, 152-162 (2019). https://doi.org/10.1016/j.electacta.2019.01.001
- M. Lee, M. S. Jee, S. Y. Lee, M. K. Cho, J. -P. Ahn, H. -S. Oh, W. Kim, Y. J. Hwang, and B. K. Min, 'Sloughing a Precursor Layer to Expose Active Stainless Steel Catalyst for Water Oxidation' ACS Applied Materials and Interfaces, 10, 24499-24507 (2018). https://doi.org/10.1021/acsami.8b04871
- M. -S. Balogun, W. Qiu, Y. Huang, H. Y. Yang, R. Xu, W. Zhao, G. -R. Li, H. Ji, and Y. Tong, 'Cost-effective alkaline water electrolysis based on nitrogen- and phosphorus-doped self-supportive electrocatalysts' Advanced Materials, 29, 1702095 (2017). https://doi.org/10.1002/adma.201702095
- B. C. M. Martindale, and E. Reisner, 'Bi-Functional irononly electrodes for efficient water splitting with enhanced stability through in situ electrochemical regeneration' Advanced Energy Materials, 6, 1502095 (2016). https://doi.org/10.1002/aenm.201502095
- X. Liu, B. You, and Y. Sun, 'Facile Surface Modification of Ubiquitous Stainless Steel Led to Competent Electrocatalysts for Overall Water Splitting' ACS Sustainable Chemistry and Engineering, 5, 4778-4784 (2017). https://doi.org/10.1021/acssuschemeng.7b00182
- J. Park, H. Yoo, and J. Choi, '3D ant-nest network of α-Fce2O3 on stainless steel for all-in-one anode for Li-ion battery' Journal of Power Sources, 431, 25-30 (2019). https://doi.org/10.1016/j.jpowsour.2019.05.054
- S. K. Tiwari, A. K. L. Singh, and R. N. Singh, 'Studies on the electrocatalytic properties of some austenitic stainless steels for oxygen evolution in an alkaline medium' Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 319, 263-274 (1991). https://doi.org/10.1016/0022-0728(91)87083-G
- L. P. Bicelli, C. Romagnani, and M. T. Rosania, 'Hydrogen Evolution Reaction on Martensitic Stainless Steel' Journal de Chimie Physique et de Physico-Chimie Biologique, 73, 783-786 (1976). https://doi.org/10.1051/jcp/1976730783
- L. P. Bicelli, C. Romagnani, and M. T. Rosania, 'Hydrogen Evolution reaction on Ferritic Stainless Steel Journal de Chimie Physique et de Physico-Chimie Biologique, 74, 529-532 (1977). https://doi.org/10.1051/jcp/1977740529
- S. Anantharaj, S. Chatterjee, K. C. Swaathini, T. S. Amarnath, E. Subhashini, D. K. Pattanayak, and S. Kundu, 'Stainless Steel Scrubber: A Cost Efficient Catalytic Electrode for Full Water Splitting in Alkaline Medium' ACS Sustainable Chemistry and Engineering, 6, 2498-2509 (2018). https://doi.org/10.1021/acssuschemeng.7b03964
- S. Anantharaj, H. Sugime, and S. Noda, 'Chemical Leaching of Inactive Cr and Subsequent Electrochemical Resurfacing of Catalytically Active Sites in Stainless Steel for High-Rate Alkaline Hydrogen Evolution Reaction' ACS Applied Energy Materials, 3, 12596-12606 (2020). https://doi.org/10.1021/acsaem.0c02505
- H. H. Farrag, A. A. Abbas, S. Y. Sayed, H. H. Alalawy, B. E. El-Anadouli, A. M. Mohammad, and N. K. Allam, 'From Rusting to Solar Power Plants: A Successful Nano-Pattering of Stainless Steel 316L for Visible Light-Induced Photoelectrocatalytic Water Splitting' ACS Sustainable Chemistry and Engineering, 6, 17352-17358 (2018). https://doi.org/10.1021/acssuschemeng.8b04899
- J. S. Sagu, K. G. U. Wijayantha, M. Bohm, S. Bohm, and T. K. Rout, 'Anodized Steel Electrodes for Supercapacitors' ACS Applied Materials and Interfaces, 8, 6277-6285 (2016). https://doi.org/10.1021/acsami.5b12107
- H. Schafer, S. Sadaf, L. Walder, K. Kuepper, S. Dinklage, J. Wollschlager, L. Schneider, M. Steinhart, J. Hardege, and D. Daum, 'Stainless steel made to rust: a robust water-splitting catalyst with benchmark characteristics' Energy Environmental Science, 8, 2685- 2697 (2015). https://doi.org/10.1039/C5EE01601K
- M. Kim, Y.-T. Kim, and J. Choi, 'Controlled contribution of Ni and Cr cations to stainless steel 304 electrode: Effect of electrochemical oxidation on electrocatalytic properties' Electrochemistry Communications, 117, 106770 (2020). https://doi.org/10.1016/j.elecom.2020.106770
- M. Kim, J. Ha, N. Shin, Y. -T. Kim, and J. Choi, 'Self-activated anodic nanoporous stainless steel electrocatalysts with high durability for the hydrogen evolution reaction' Electrochimica Acta, 364, 137315 (2020). https://doi.org/10.1016/j.electacta.2020.137315
- B. Sarma, A. L. Jurovitzki, R. S. Ray, Y. R. Smith, S. K. Mohanty, and M. Misra, 'Electrochemical capacitance of iron oxide nanotube (Fe-NT): effect of annealing atmospheres' Nanotechnology, 26, 265401 (2015). https://doi.org/10.1088/0957-4484/26/26/265401
- K. Xie, M. Guo, H. Huang, and Y. Liu, 'Fabrication of iron oxide nanotube arrays by electrochemical anodization' Corrosion Science, 88, 66-75 (2014). https://doi.org/10.1016/j.corsci.2014.07.019
- K. Lee, 'Principle of Anodic TiO2 Nanotube Formations' Applied Chemistry for Engineering, 28, 601-606 (2017). https://doi.org/10.14478/ACE.2017.1011
- K. Lee, A. Mazare, and P. Schmuki, 'One-Dimensional Titanium Dioxide Nanomaterials: Nanotubes' Chemical Review, 114, 9385-9454 (2014). https://doi.org/10.1021/cr500061m
- M. Kim, J. Lee, M. Je, B. Heo, H. Yoo, H. Choi, J. Choi, and K. Lee, 'Electric field-driven one-step formation of vertical p-n junction TiO2 nanotubes exhibiting strong photocatalytic hydrogen production' Journal of Materials Chemistry A, 9, 2239-2247 (2021). https://doi.org/10.1039/D0TA10062E
- M. Kim, J. Lee, K. Lee, Y. -T. Kim, and J. Choi, 'Preparation of Anodic Iron Oxide Composite Incorporated with WO3 on the Stainless Steel Type-304 Substrate Through a Single-step Anodization' Journal of Korean Industrial Surface Engineering, 53, 257-264 (2020).
- J. Choi, J. K. Lee, J. H. Lim, and S. J. Kim, 'Technology Trends in Fabrication of Nanostructures of Metal Oxides by Anodization and Their Applications' Journal of Korean Industrial and Engineering Chemistry, 19, 249-258 (2008).
- K. Kure, Y. Konno, E. Tsuji, P. Skeldon, G. E. Thompson, and H. Habazaki, 'Formation of self-organized nanoporous anodic films on Type 304 stainless steel' Electrochemistry Communications, 21, 1-4 (2012). https://doi.org/10.1016/j.elecom.2012.05.003
- H. Habazaki, K. Shahzad, T. Hiraga, E. Tsuji, Y. Aoki, 'Formation of Self-Organized Porous Anodic Films on Iron and Stainless Steels' ECS Transactions, 69, 211-223 (2015).
- Y. Wang, G. Li, K. Wang, and X. Chen, 'Fabrication and formation mechanisms of ultra-thick porous anodic oxides film with controllable morphology on type-304 stainless steel' Applied Surface Science, 505, 144497 (2020). https://doi.org/10.1016/j.apsusc.2019.144497
- H. Asoh, M. Nakatani, and S. Ono, 'Fabrication of thick nanoporous oxide films on stainless steel via DC anodization and subsequent biofunctionalization' Surface and Coatings Technology, 307, 441-451 (2016). https://doi.org/10.1016/j.surfcoat.2016.09.025
- V. Klimas, V. Pakstas, I. Vrublevsky, K. Chernyakova, and A. Jagminas, 'Fabrication and Characterization of Anodic Films onto the Type-304 Stainless Steel in Glycerol Electrolyte' Journal of Physical Chemistry C, 117, 20730-20737 (2013). https://doi.org/10.1021/jp407028u
- J. Lee, H. -K. Choi, M. G. Kim, Y. S. Lee, and K. Lee, 'Formation of porous oxide layer on stainless steel by anodization in hot glycerol electrolyte' Applied Chemistry for Engineering, 31, 215-219 (2020).
- H. Yoo, Y. -W. Choi, and J. Choi, 'TiO2 nanotubes with a doping of ruthenium oxide by single-step anodization for water oxidation applications' ChemCatChem, 7, 643-647 (2015). https://doi.org/10.1002/cctc.201402787
- H. Yoo, K. Oh, Y. R. Lee, K. H. Row, G. Lee, and J. Choi, 'Simultaneous co-doping of RuO2 and IrO2 into anodic TiO2 nanotubes: A binary catalyst for electrochemical water splitting' International Journal of Hydrogen Energy, 42, 6657-6664 (2017). https://doi.org/10.1016/j.ijhydene.2016.12.018