DOI QR코드

DOI QR Code

Technology Trends in Stainless Steel for Water Splitting Application

스테인레스 강의 수전해 전극 응용기술 동향

  • Kim, Moonsu (Department of Chemistry and Chemical Engineering, Inha University) ;
  • Ha, Jaeyun (Department of Chemistry and Chemical Engineering, Inha University) ;
  • Kim, Yong-Tae (Department of Chemistry and Chemical Engineering, Inha University) ;
  • Choi, Jinsub (Department of Chemistry and Chemical Engineering, Inha University)
  • 김문수 (인하대학교 화학.화학공학 융합학과) ;
  • 하재윤 (인하대학교 화학.화학공학 융합학과) ;
  • 김용태 (인하대학교 화학.화학공학 융합학과) ;
  • 최진섭 (인하대학교 화학.화학공학 융합학과)
  • Received : 2021.03.03
  • Accepted : 2021.05.17
  • Published : 2021.05.31

Abstract

Stainless steel, which includes Ni and Cr with Fe balance, is most often applied for a wide range of applications such as structure and equipment material. It is not only suitable for use in these applications due to its good corrosion resistance, but also can be applied to catalyst, supporting material, and current collector due to intrinsic properties of Ni and Fe contained in stainless steel. Therefore, in recent years, a lots of surface treatment methods have been studied to activate stainless steel, developing application of water splitting system. In this review paper, the research on the surface treatment technology of stainless steel for water splitting is summarized. It is expected to be able to propose the diverse surface treatment approaches of stainless steel for application to low-cost and highly efficient water splitting electrode.

스테인레스 강은 지구상에서 가장 널리 사용되고 있는 철의 합금으로 니켈과 크롬을 포함하여 높은 내부식성을 가지고 있어 구조용 강재로 사용하기 매우 적합하다. 또한, 최근에는 스테인레스 강에 포함된 철과 니켈의 고유 특성을 이용하여 다양한 고기능성 촉매나 지지체, 또는 전극의 집전체 등으로의 응용 연구가 다양하게 이루어지고 있다. 특히, 높은 촉매 특성으로 인해 수전해 전극으로의 응용을 위한 스테인레스 강의 표면에서의 활성화 표면 처리 연구가 많이 이루어지고 있다. 이에 본 총설은 수전해 전극 응용을 위한 스테인레스 강의 수전해 전극 응용 표면처리 기술 자료를 정리 및 요약하였으며, 스테인레스 강의 표면처리 방법에 대한 특징 및 이를 통해 스테인레스 강이 저비용 고효율의 수전해 전극 활용을 위한 촉매 물질로써 응용될 수 있는 여러 방법을 제시하였다.

Keywords

Acknowledgement

이 논문은 2020년도 정부(교육부)의 재원으로 한국 연구재단 기초연구사업의 지원을 받아 수행된 연구임(No. 2020R1I1A1A01064020).

References

  1. X. Zou, and Y. Zhang, 'Noble metal-free hydrogen evolution catalysts for water splitting' Chemical Society Review, 44, 5148-5180 (2015). https://doi.org/10.1039/C4CS00448E
  2. N. Armaroli, and V. Balzani, 'The Future of Energy Supply: Challenges and Opportunities' Angewante Chemie International Edition, 46, 52-66 (2007). https://doi.org/10.1002/anie.200602373
  3. 권용근, 조은애, '수전해 기술 동향 및 전망', 재료마당, 대한금속재료학회, 28, 4-12 (2015)
  4. H. Schafer, and M. Chatenet, 'Steel: The Resurrection of a Forgotten Water-Splitting Catalyst' ACS Energy Letter, 3, 574-591 (2018). https://doi.org/10.1021/acsenergylett.8b00024
  5. D. Chen, R. Lu, Z. Pu, J. Zhu, H. -W. Li, F. Liu, S. Hu, X. Luo, J. Wu, Y. Zhao, and S. Mu, 'Ru-doped 3D flower-like bimetallic phosphide with a climbing effect on overall water splitting' Applied Catalysis B - Environmental, 279, 119396 (2020). https://doi.org/10.1016/j.apcatb.2020.119396
  6. S. Anantharaj, S. R. Ede, K. Sakthikumar, K. Karthick, S. Mishra, and S. Kundu, 'Recent Trends and Perspectives in Electrochemical Water Splitting with an Emphasis on Sulfide, Selenide, and Phosphide Catalysts of Fe, Co, and Ni: A Review' ACS Catalysts, 6, 4660-4672 (2016). https://doi.org/10.1021/acscatal.6b00965
  7. K. Honda, and A. Fujishima, 'Electrochemical Photolysis of Water at a Semiconductor Electrode' Nature, 238, 37-38 (1972). https://doi.org/10.1038/238037a0
  8. W. Han, K. Kuepper, P. Hou, W. Akram, H. Eickmeier, J. Hardege, M. Steinhart, and H. Schafer, 'Free-Sustaining Three-Dimensional S235 Steel-Based Porous Electrocatalyst for Highly Efficient and Durable Oxygen Evolution' Chem. Sus. Chem., 11, 3661-3671 (2018). https://doi.org/10.1002/cssc.201801351
  9. T. Shinagawa, A. T. Garcia-Esparza, and K. Takanabe, 'Insight on Tafel slopes from a microkinetic analysis of aqueous electrocatalysis for energy conversion' Scientific Report, 5, 13801 (2015). https://doi.org/10.1038/srep13801
  10. X. Rong, J. Parolin, and A. M. Kolpak, 'A Fundamental Relationship between Reaction Mechanism and Stability in Metal Oxide Catalysts for Oxygen Evolution' ACS Catalysts, 6, 1153-1158 (2016). https://doi.org/10.1021/acscatal.5b02432
  11. Y. -F. Li, and A. Selloni, 'Mechanism and Activity of Water Oxidation on Selected Surfaces of Pure and FeDoped NiOx' ACS Catalysts, 4, 1148-1153 (2014). https://doi.org/10.1021/cs401245q
  12. W. Zhou, H. Liu, J. Wang, D. Liu, G. Du, and J. Cui, 'Ag2O/TiO2 Nanobelts Heterostructure with Enhanced Ultraviolet and Visible Photocatalytic Activity' ACS Applied Materials and Interfaces, 2, 2385-2392 (2010). https://doi.org/10.1021/am100394x
  13. L. Jiang, G. Zhou, J. Mi, and Z. Wu, 'Fabrication of visible-light-driven one-dimensional anatase TiO2/Ag heterojunction plasmonic photocatalyst' Catalysis Communication, 24, 48-51 (2012). https://doi.org/10.1016/j.catcom.2012.03.017
  14. J. Creus, J. De Tovar, N. Romero, J. Gracia-Anton, K. Philippot, R. Bofill, and X. Sala, 'Ruthenium Nanoparticles for Catalytic Water Splitting' Chem. Sus. Chem., 12, 2493-2514 (2019). https://doi.org/10.1002/cssc.201900393
  15. A. Singh, S. L. Y. Chang, R. K. Hocking, U. Bach, and L. Spiccia, 'Highly active nickel oxide water oxidation catalysts deposited from molecular complexes' Energy and Environmental Science, 2, 579-586 (2013).
  16. R. D. Smith, M. S. Prevot, R. D. Fagan, S. Trudel, and C. P. Berlinquette, 'Water Oxidation Catalysis: Electrocatalytic Response to Metal Stoichiometry in Amorphous Metal Oxide Films Containing Iron, Cobalt, and Nickel' Journal of American Chemical Society, 135, 11580-11586 (2013). https://doi.org/10.1021/ja403102j
  17. J. J. Fillol, Z. Codola, I. Garcia-Bosch, L. Gomez, J. J. Pla, and M. Costas, 'Efficient water oxidation catalysts based on readily available iron coordination complexes' Nature Chemistry, 3, 807-813 (2011). https://doi.org/10.1038/nchem.1140
  18. Q. -Q. Chen, C. -C. Hou, C. -J. Wang, X. Yang, R. Shi, and Y. Chen, 'Ir4+-Doped NiFe LDH to expedite hydrogen evolution kinetics as a Pt-like electrocatalyst for water splitting' Chemical Communication, 54, 6400-6403 (2018). https://doi.org/10.1039/C8CC02872A
  19. X. Gao, D. Chen, J. Qi, F. Li, Y. Song, W. Zhang, and R. Cao, 'NiFe Oxalate Nanomesh Array with Homogenous Doping of Fe for Electrocatalytic Water Oxidation' Small, 15, 1904579 (2019). https://doi.org/10.1002/smll.201904579
  20. G. Chen, T. Wang, J. Zhang, P. Liu, H. Sun, X. Zhuang, M. Chen, and X. Feng, 'Accelerated Hydrogen Evolution Kinetics on NiFe-Layered Double Hydroxide Electrocatalysts by Tailoring Water Dissociation Active Sites' Advanced Materials, 30, 1706279 (2018). https://doi.org/10.1002/adma.201706279
  21. Y. Li, S. Guo, T. Jin, Y. Wang, F. Cheng, and L. Jiao, 'Promoted synergy in core-branch CoP@NiFe-OH nanohybrids for efficient electrochemical-/ photovoltage-driven overall water splitting' Nano Energy, 63, 103821 (2019). https://doi.org/10.1016/j.nanoen.2019.06.017
  22. M. Qu, Y. Jiang, M. Yang, S. Liu, Q. Guo, W. Shen, M. Li, and R. He, 'Regulating electron density of NiFe-P nanosheets electrocatalysts by a trifle of Ru for high-efficient overall water splitting' Applied Catalysis B - Environmental, 263, 118324 (2020). https://doi.org/10.1016/j.apcatb.2019.118324
  23. J. Li, P. Xu, R. Zhou, R. Li, L. Qiu, S. P. Jiang, and D. Yuan, 'Co9S8-Ni3S2 heterointerfaced nanotubes on Ni foam as highly efficient and flexible bifunctional electrodes for water splitting' Electrochimica Acta, 299, 152-162 (2019). https://doi.org/10.1016/j.electacta.2019.01.001
  24. M. Lee, M. S. Jee, S. Y. Lee, M. K. Cho, J. -P. Ahn, H. -S. Oh, W. Kim, Y. J. Hwang, and B. K. Min, 'Sloughing a Precursor Layer to Expose Active Stainless Steel Catalyst for Water Oxidation' ACS Applied Materials and Interfaces, 10, 24499-24507 (2018). https://doi.org/10.1021/acsami.8b04871
  25. M. -S. Balogun, W. Qiu, Y. Huang, H. Y. Yang, R. Xu, W. Zhao, G. -R. Li, H. Ji, and Y. Tong, 'Cost-effective alkaline water electrolysis based on nitrogen- and phosphorus-doped self-supportive electrocatalysts' Advanced Materials, 29, 1702095 (2017). https://doi.org/10.1002/adma.201702095
  26. B. C. M. Martindale, and E. Reisner, 'Bi-Functional irononly electrodes for efficient water splitting with enhanced stability through in situ electrochemical regeneration' Advanced Energy Materials, 6, 1502095 (2016). https://doi.org/10.1002/aenm.201502095
  27. X. Liu, B. You, and Y. Sun, 'Facile Surface Modification of Ubiquitous Stainless Steel Led to Competent Electrocatalysts for Overall Water Splitting' ACS Sustainable Chemistry and Engineering, 5, 4778-4784 (2017). https://doi.org/10.1021/acssuschemeng.7b00182
  28. J. Park, H. Yoo, and J. Choi, '3D ant-nest network of α-Fce2O3 on stainless steel for all-in-one anode for Li-ion battery' Journal of Power Sources, 431, 25-30 (2019). https://doi.org/10.1016/j.jpowsour.2019.05.054
  29. S. K. Tiwari, A. K. L. Singh, and R. N. Singh, 'Studies on the electrocatalytic properties of some austenitic stainless steels for oxygen evolution in an alkaline medium' Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 319, 263-274 (1991). https://doi.org/10.1016/0022-0728(91)87083-G
  30. L. P. Bicelli, C. Romagnani, and M. T. Rosania, 'Hydrogen Evolution Reaction on Martensitic Stainless Steel' Journal de Chimie Physique et de Physico-Chimie Biologique, 73, 783-786 (1976). https://doi.org/10.1051/jcp/1976730783
  31. L. P. Bicelli, C. Romagnani, and M. T. Rosania, 'Hydrogen Evolution reaction on Ferritic Stainless Steel Journal de Chimie Physique et de Physico-Chimie Biologique, 74, 529-532 (1977). https://doi.org/10.1051/jcp/1977740529
  32. S. Anantharaj, S. Chatterjee, K. C. Swaathini, T. S. Amarnath, E. Subhashini, D. K. Pattanayak, and S. Kundu, 'Stainless Steel Scrubber: A Cost Efficient Catalytic Electrode for Full Water Splitting in Alkaline Medium' ACS Sustainable Chemistry and Engineering, 6, 2498-2509 (2018). https://doi.org/10.1021/acssuschemeng.7b03964
  33. S. Anantharaj, H. Sugime, and S. Noda, 'Chemical Leaching of Inactive Cr and Subsequent Electrochemical Resurfacing of Catalytically Active Sites in Stainless Steel for High-Rate Alkaline Hydrogen Evolution Reaction' ACS Applied Energy Materials, 3, 12596-12606 (2020). https://doi.org/10.1021/acsaem.0c02505
  34. H. H. Farrag, A. A. Abbas, S. Y. Sayed, H. H. Alalawy, B. E. El-Anadouli, A. M. Mohammad, and N. K. Allam, 'From Rusting to Solar Power Plants: A Successful Nano-Pattering of Stainless Steel 316L for Visible Light-Induced Photoelectrocatalytic Water Splitting' ACS Sustainable Chemistry and Engineering, 6, 17352-17358 (2018). https://doi.org/10.1021/acssuschemeng.8b04899
  35. J. S. Sagu, K. G. U. Wijayantha, M. Bohm, S. Bohm, and T. K. Rout, 'Anodized Steel Electrodes for Supercapacitors' ACS Applied Materials and Interfaces, 8, 6277-6285 (2016). https://doi.org/10.1021/acsami.5b12107
  36. H. Schafer, S. Sadaf, L. Walder, K. Kuepper, S. Dinklage, J. Wollschlager, L. Schneider, M. Steinhart, J. Hardege, and D. Daum, 'Stainless steel made to rust: a robust water-splitting catalyst with benchmark characteristics' Energy Environmental Science, 8, 2685- 2697 (2015). https://doi.org/10.1039/C5EE01601K
  37. M. Kim, Y.-T. Kim, and J. Choi, 'Controlled contribution of Ni and Cr cations to stainless steel 304 electrode: Effect of electrochemical oxidation on electrocatalytic properties' Electrochemistry Communications, 117, 106770 (2020). https://doi.org/10.1016/j.elecom.2020.106770
  38. M. Kim, J. Ha, N. Shin, Y. -T. Kim, and J. Choi, 'Self-activated anodic nanoporous stainless steel electrocatalysts with high durability for the hydrogen evolution reaction' Electrochimica Acta, 364, 137315 (2020). https://doi.org/10.1016/j.electacta.2020.137315
  39. B. Sarma, A. L. Jurovitzki, R. S. Ray, Y. R. Smith, S. K. Mohanty, and M. Misra, 'Electrochemical capacitance of iron oxide nanotube (Fe-NT): effect of annealing atmospheres' Nanotechnology, 26, 265401 (2015). https://doi.org/10.1088/0957-4484/26/26/265401
  40. K. Xie, M. Guo, H. Huang, and Y. Liu, 'Fabrication of iron oxide nanotube arrays by electrochemical anodization' Corrosion Science, 88, 66-75 (2014). https://doi.org/10.1016/j.corsci.2014.07.019
  41. K. Lee, 'Principle of Anodic TiO2 Nanotube Formations' Applied Chemistry for Engineering, 28, 601-606 (2017). https://doi.org/10.14478/ACE.2017.1011
  42. K. Lee, A. Mazare, and P. Schmuki, 'One-Dimensional Titanium Dioxide Nanomaterials: Nanotubes' Chemical Review, 114, 9385-9454 (2014). https://doi.org/10.1021/cr500061m
  43. M. Kim, J. Lee, M. Je, B. Heo, H. Yoo, H. Choi, J. Choi, and K. Lee, 'Electric field-driven one-step formation of vertical p-n junction TiO2 nanotubes exhibiting strong photocatalytic hydrogen production' Journal of Materials Chemistry A, 9, 2239-2247 (2021). https://doi.org/10.1039/D0TA10062E
  44. M. Kim, J. Lee, K. Lee, Y. -T. Kim, and J. Choi, 'Preparation of Anodic Iron Oxide Composite Incorporated with WO3 on the Stainless Steel Type-304 Substrate Through a Single-step Anodization' Journal of Korean Industrial Surface Engineering, 53, 257-264 (2020).
  45. J. Choi, J. K. Lee, J. H. Lim, and S. J. Kim, 'Technology Trends in Fabrication of Nanostructures of Metal Oxides by Anodization and Their Applications' Journal of Korean Industrial and Engineering Chemistry, 19, 249-258 (2008).
  46. K. Kure, Y. Konno, E. Tsuji, P. Skeldon, G. E. Thompson, and H. Habazaki, 'Formation of self-organized nanoporous anodic films on Type 304 stainless steel' Electrochemistry Communications, 21, 1-4 (2012). https://doi.org/10.1016/j.elecom.2012.05.003
  47. H. Habazaki, K. Shahzad, T. Hiraga, E. Tsuji, Y. Aoki, 'Formation of Self-Organized Porous Anodic Films on Iron and Stainless Steels' ECS Transactions, 69, 211-223 (2015).
  48. Y. Wang, G. Li, K. Wang, and X. Chen, 'Fabrication and formation mechanisms of ultra-thick porous anodic oxides film with controllable morphology on type-304 stainless steel' Applied Surface Science, 505, 144497 (2020). https://doi.org/10.1016/j.apsusc.2019.144497
  49. H. Asoh, M. Nakatani, and S. Ono, 'Fabrication of thick nanoporous oxide films on stainless steel via DC anodization and subsequent biofunctionalization' Surface and Coatings Technology, 307, 441-451 (2016). https://doi.org/10.1016/j.surfcoat.2016.09.025
  50. V. Klimas, V. Pakstas, I. Vrublevsky, K. Chernyakova, and A. Jagminas, 'Fabrication and Characterization of Anodic Films onto the Type-304 Stainless Steel in Glycerol Electrolyte' Journal of Physical Chemistry C, 117, 20730-20737 (2013). https://doi.org/10.1021/jp407028u
  51. J. Lee, H. -K. Choi, M. G. Kim, Y. S. Lee, and K. Lee, 'Formation of porous oxide layer on stainless steel by anodization in hot glycerol electrolyte' Applied Chemistry for Engineering, 31, 215-219 (2020).
  52. H. Yoo, Y. -W. Choi, and J. Choi, 'TiO2 nanotubes with a doping of ruthenium oxide by single-step anodization for water oxidation applications' ChemCatChem, 7, 643-647 (2015). https://doi.org/10.1002/cctc.201402787
  53. H. Yoo, K. Oh, Y. R. Lee, K. H. Row, G. Lee, and J. Choi, 'Simultaneous co-doping of RuO2 and IrO2 into anodic TiO2 nanotubes: A binary catalyst for electrochemical water splitting' International Journal of Hydrogen Energy, 42, 6657-6664 (2017). https://doi.org/10.1016/j.ijhydene.2016.12.018