DOI QR코드

DOI QR Code

Improving Mechanical Properties of Wire Arc Additively Manufactured Ti-6Al-4V Alloy by Ultrasonic Needle Peening Treatment

  • Yi, Hui-Jun (Defense Manufacturing Engineering Team, Hyundai-Rotem Company) ;
  • Kim, Jin-Woo (Defense Manufacturing Engineering Team, Hyundai-Rotem Company) ;
  • Kim, Young-Lak (Strategy and Planning Division, KISWEL LTD.) ;
  • Shin, Sangyong (School of Materials Science and Engineering, University of Ulsan)
  • 투고 : 2021.03.17
  • 심사 : 2021.04.21
  • 발행 : 2021.05.27

초록

Wire arc additive manufacturing (WAAM) is being considered as a technology to replace the conventional manufacturing process of titanium alloys. However, coarse β grains, which can extend through several deposited materials, result in strong textures and anisotropy. As a solution, we study the plastic deformation effects of ultrasonic needle peening (UNP) on the microstructure. UNP treated materials deform plastically and the dislocation density increases. Fine α+α' grains with low aspect ratio are observed in the UNP treated specimens. UNP treated WAAM Ti-6Al-4V alloys have higher strength and lower elongation than those characteristics of WAAM Ti-6Al-4V alloys. Due to UNP treatment, the z-axis directional specimens exhibit a greater effect of reducing elongation than do the x-axis directional specimens. The UNP treatment produces fine grains in proportion to the number of times UNP is performed, thereby increasing strength. UNP processes produce a large number of dislocations in the WAAM Ti-6Al-4V alloys, with the most dislocations being formed at the surface.

키워드

참고문헌

  1. M. Peters, J. Hemptenmacher, J. Kumpfert and C. Leyens, Titanium and Titanium Alloys, p. 1, ed. By C. Leyens, M. Peters, Wiley-VCH, Weinheim, Germany (2003).
  2. M. J. Donachie, Titanium: A Technical Guide, p. 1, 2nd ed., ASM International, Materials Park, OH (2000).
  3. B. Wu, Z. Pan, D. H. Ding, D. Cuiuri, H. J. Li, J. Xu and J. Norrish, J. Manuf. Process., 35, 127 (2018). https://doi.org/10.1016/j.jmapro.2018.08.001
  4. S. Liu and Y. C. Shin, Mater. and Des. 164, 107552 (2019). https://doi.org/10.1016/j.matdes.2018.107552
  5. J. Donoghue, A. A. Antonysamy, F. Martina, P. A. Colegrove, S. W. Williams and P. B. Prangnell, Mater. Charact., 114, 103 (2016). https://doi.org/10.1016/j.matchar.2016.02.001
  6. G. Suprobo, A. A. Ammar, N. Park, E. R. Baek and S. Kim, Met. Mater. Int., 25, 1428 (2019). https://doi.org/10.1007/s12540-019-00304-4
  7. F. Arias-Gonzalez, J. D. Val, R. Comesana, J. Penide, F. Lusquinos, F. Quintero, A. Riveiro, M. Boutinguiza, F. J. Gil and J. Pou, Met. Mater. Int., 24, 231 (2019). https://doi.org/10.1007/s12540-017-7094-x
  8. Y. Y. Byun, S. Lee, S. M. Seo, J. Yeom, S. E. Kim, N. Kang and J. Hong, Met. Mater. Int., 24, 1213 (2018). https://doi.org/10.1007/s12540-018-0148-x
  9. S. S. Al-Berman, M. L. Blackmore, W. Zhang and I. Todd, Metall. Mater. Trans. A, 41, 3422 (2010). https://doi.org/10.1007/s11661-010-0397-x
  10. A. A. Antonysamy, J. Meyer and P. Prangnell, Mater. Charact., 84, 153 (2013). https://doi.org/10.1016/j.matchar.2013.07.012
  11. S. Reginster, A. Mertens, H. Paydas, T. Tchuindjang, Q. Contrepois, T. Dornal, O. Lermaire and J. LecomteBeker, Mater. Sci. Forum, 765, 413 (2013). https://doi.org/10.4028/www.scientific.net/MSF.765.413
  12. P. A. Colegrove, J. Donoghue, F. Martina, J. Gu, P. Prangnell and J. Honnige, Scr. Mater., 135, 111 (2017). https://doi.org/10.1016/j.scriptamat.2016.10.031
  13. F. Martina, P. A. Colegrove, S. W. Williams and J. Meyer, Metall. Mater. Trans. A, 46, 6103 (2015). https://doi.org/10.1007/s11661-015-3172-1
  14. J. Gu, J. Ding, S.W. Williams, H. Gu, P. Ma and Y. Zhai, J. Mater. Process. Technol., 230, 26 (2016). https://doi.org/10.1016/j.jmatprotec.2015.11.006
  15. F. Wang, S. Williams, P. Colegrove and A. A. Antonysamy, Metall. Mater. Trans. A, 44, 968 (2013). https://doi.org/10.1007/s11661-012-1444-6
  16. M. J. Bermingham, S. D. McDonald, K. Nogita, D. H. S. John and M. S. Dargusch, Scr. Mater., 59, 538 (2008). https://doi.org/10.1016/j.scriptamat.2008.05.002
  17. P. Akerfeldt, M.-L. Antti and R. Pederson, Mater. Sci. Eng., A, 674, 428 (2016). https://doi.org/10.1016/j.msea.2016.07.038
  18. B. Wu, Z. Pan, D. Ding, D, Cuiuri, H. J. Li and Z. Fe, J. Mater. Process. Technol., 258, 97 (2018). https://doi.org/10.1016/j.jmatprotec.2018.03.024
  19. M. I. Utama, N. Park and E. R. Baek, Met. Mater. Int., 25, 439 (2019). https://doi.org/10.1007/s12540-018-0197-1
  20. Z. Liu, M. Qi and X. Qin, Met. Mater. Int., 26, 1060 (2020). https://doi.org/10.1007/s12540-019-00439-4
  21. P. Lu, M. Wu and X. Liu, Met. Mater. Int., 26, 1182 (2020). https://doi.org/10.1007/s12540-019-00506-w